Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 115, 11 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.115
(Mi sigma673)
 

This article is cited in 6 scientific papers (total in 6 papers)

A Connection Formula of the Hahn–Exton $q$-Bessel Function

Takeshi Morita

Graduate School of Information Science and Technology, Osaka University, 1-1 Machikaneyama-machi, Toyonaka, 560-0043, Japan
Full-text PDF (323 kB) Citations (6)
References:
Abstract: We show a connection formula of the Hahn–Exton $q$-Bessel function around the origin and the infinity. We introduce the $q$-Borel transformation and the $q$-Laplace transformation following C. Zhang to obtain the connection formula. We consider the limit $p\to 1^-$ of the connection formula.
Keywords: Hahn–Exton $q$-Bessel function, $q$-Borel transformation, connection problems.
Received: May 11, 2011; in final form December 14, 2011; Published online December 16, 2011
Bibliographic databases:
Document Type: Article
MSC: 33D15; 34M40; 39A13
Language: English
Citation: Takeshi Morita, “A Connection Formula of the Hahn–Exton $q$-Bessel Function”, SIGMA, 7 (2011), 115, 11 pp.
Citation in format AMSBIB
\Bibitem{Mor11}
\by Takeshi Morita
\paper A Connection Formula of the Hahn--Exton $q$-Bessel Function
\jour SIGMA
\yr 2011
\vol 7
\papernumber 115
\totalpages 11
\mathnet{http://mi.mathnet.ru/sigma673}
\crossref{https://doi.org/10.3842/SIGMA.2011.115}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2861226}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298102100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857155031}
Linking options:
  • https://www.mathnet.ru/eng/sigma673
  • https://www.mathnet.ru/eng/sigma/v7/p115
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:218
    Full-text PDF :51
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024