Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 105, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.105
(Mi sigma663)
 

This article is cited in 4 scientific papers (total in 4 papers)

Dolbeault Complex on $S^4\setminus \{\,\cdot\,\}$ and $S^6\setminus\{\,\cdot\,\}$ through Supersymmetric Glasses

Andrei V. Smilga

SUBATECH, Université de Nantes, 4 rue Alfred Kastler, BP 20722, Nantes 44307, France
Full-text PDF (396 kB) Citations (4)
References:
Abstract: $S^4$ is not a complex manifold, but it is sufficient to remove one point to make it complex. Using supersymmetry methods, we show that the Dolbeault complex (involving the holomorphic exterior derivative $\partial$ and its Hermitian conjugate) can be perfectly well defined in this case. We calculate the spectrum of the Dolbeault Laplacian. It involves $3$ bosonic zero modes such that the Dolbeault index on $S^4\setminus\{\,\cdot\,\}$ is equal to $3$.
Keywords: Dolbeault, supersymmetry.
Received: June 22, 2011; in final form November 9, 2011; Published online November 15, 2011
Bibliographic databases:
Document Type: Article
MSC: 32C15; 53B35; 53Z05
Language: English
Citation: Andrei V. Smilga, “Dolbeault Complex on $S^4\setminus \{\,\cdot\,\}$ and $S^6\setminus\{\,\cdot\,\}$ through Supersymmetric Glasses”, SIGMA, 7 (2011), 105, 14 pp.
Citation in format AMSBIB
\Bibitem{Smi11}
\by Andrei V. Smilga
\paper Dolbeault Complex on $S^4\setminus \{\,\cdot\,\}$ and $S^6\setminus\{\,\cdot\,\}$ through Supersymmetric Glasses
\jour SIGMA
\yr 2011
\vol 7
\papernumber 105
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma663}
\crossref{https://doi.org/10.3842/SIGMA.2011.105}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297119800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84856051005}
Linking options:
  • https://www.mathnet.ru/eng/sigma663
  • https://www.mathnet.ru/eng/sigma/v7/p105
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024