Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 094, 22 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.094
(Mi sigma652)
 

This article is cited in 2 scientific papers (total in 2 papers)

Four-Dimensional Spin Foam Perturbation Theory

João Faria Martinsa, Aleksandar Mikovićbc

a Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
b Departamento de Matemática, Universidade Lusófona de Humanidades e Tecnologia, Av do Campo Grande, 376, 1749-024 Lisboa, Portugal
c Grupo de Física Matemática da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal
Full-text PDF (558 kB) Citations (2)
References:
Abstract: We define a four-dimensional spin-foam perturbation theory for the ${\rm BF}$-theory with a $B\wedge B$ potential term defined for a compact semi-simple Lie group $G$ on a compact orientable 4-manifold $M$. This is done by using the formal spin foam perturbative series coming from the spin-foam generating functional. We then regularize the terms in the perturbative series by passing to the category of representations of the quantum group $U_q (\mathfrak{g})$ where $\mathfrak{g}$ is the Lie algebra of $G$ and $q$ is a root of unity. The Chain–Mail formalism can be used to calculate the perturbative terms when the vector space of intertwiners $\Lambda\otimes \Lambda \to A$, where $A$ is the adjoint representation of $\mathfrak{g}$, is 1-dimensional for each irrep $\Lambda$. We calculate the partition function $Z$ in the dilute-gas limit for a special class of triangulations of restricted local complexity, which we conjecture to exist on any 4-manifold $M$. We prove that the first-order perturbative contribution vanishes for finite triangulations, so that we define a dilute-gas limit by using the second-order contribution. We show that $Z$ is an analytic continuation of the Crane–Yetter partition function. Furthermore, we relate $Z$ to the partition function for the $F\wedge F$ theory.
Keywords: spin foam models; BF-theory; spin networks; dilute-gas limit; Crane–Yetter invariant; spin-foam perturbation theory.
Received: June 3, 2011; in final form September 23, 2011; Published online October 11, 2011
Bibliographic databases:
Document Type: Article
MSC: 81T25; 81T45; 57R56
Language: English
Citation: João Faria Martins, Aleksandar Miković, “Four-Dimensional Spin Foam Perturbation Theory”, SIGMA, 7 (2011), 094, 22 pp.
Citation in format AMSBIB
\Bibitem{FarMik11}
\by Jo\~ao Faria Martins, Aleksandar Mikovi{\'c}
\paper Four-Dimensional Spin Foam Perturbation Theory
\jour SIGMA
\yr 2011
\vol 7
\papernumber 094
\totalpages 22
\mathnet{http://mi.mathnet.ru/sigma652}
\crossref{https://doi.org/10.3842/SIGMA.2011.094}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2861182}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000295893100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855761768}
Linking options:
  • https://www.mathnet.ru/eng/sigma652
  • https://www.mathnet.ru/eng/sigma/v7/p94
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :41
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024