Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 090, 11 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.090
(Mi sigma648)
 

This article is cited in 3 scientific papers (total in 3 papers)

Holomorphic Parabolic Geometries and Calabi–Yau Manifolds

Benjamin McKay

School of Mathematical Sciences, University College Cork, Cork, Ireland
Full-text PDF (340 kB) Citations (3)
References:
Abstract: We prove that the only complex parabolic geometries on Calabi–Yau manifolds are the homogeneous geometries on complex tori. We also classify the complex parabolic geometries on homogeneous compact Kähler manifolds.
Keywords: parabolic geometry, Calabi–Yau manifold.
Received: May 25, 2011; in final form September 15, 2011; Published online September 20, 2011
Bibliographic databases:
Document Type: Article
MSC: 53C55; 53A55; 53C10
Language: English
Citation: Benjamin McKay, “Holomorphic Parabolic Geometries and Calabi–Yau Manifolds”, SIGMA, 7 (2011), 090, 11 pp.
Citation in format AMSBIB
\Bibitem{Mck11}
\by Benjamin McKay
\paper Holomorphic Parabolic Geometries and Calabi--Yau Manifolds
\jour SIGMA
\yr 2011
\vol 7
\papernumber 090
\totalpages 11
\mathnet{http://mi.mathnet.ru/sigma648}
\crossref{https://doi.org/10.3842/SIGMA.2011.090}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2861186}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000295041400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855758013}
Linking options:
  • https://www.mathnet.ru/eng/sigma648
  • https://www.mathnet.ru/eng/sigma/v7/p90
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024