Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 087, 39 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.087
(Mi sigma645)
 

This article is cited in 3 scientific papers (total in 3 papers)

Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs

Martijn Caspers

Radboud Universiteit Nijmegen, IMAPP, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
Full-text PDF (695 kB) Citations (3)
References:
Abstract: We study Gelfand pairs for locally compact quantum groups. We give an operator algebraic interpretation and show that the quantum Plancherel transformation restricts to a spherical Plancherel transformation. As an example, we turn the quantum group analogue of the normaliser of $SU(1,1)$ in $SL(2,\mathbb C$) together with its diagonal subgroup into a pair for which every irreducible corepresentation admits at most two vectors that are invariant with respect to the quantum subgroup. Using a $\mathbb Z_2$-grading, we obtain product formulae for little $q$-Jacobi functions.
Keywords: locally compact quantum groups; Plancherel theorem; Fourier transform; spherical functions.
Received: April 14, 2011; in final form August 30, 2011; Published online September 6, 2011
Bibliographic databases:
Document Type: Article
MSC: 16T99; 43A90
Language: English
Citation: Martijn Caspers, “Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs”, SIGMA, 7 (2011), 087, 39 pp.
Citation in format AMSBIB
\Bibitem{Cas11}
\by Martijn Caspers
\paper Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs
\jour SIGMA
\yr 2011
\vol 7
\papernumber 087
\totalpages 39
\mathnet{http://mi.mathnet.ru/sigma645}
\crossref{https://doi.org/10.3842/SIGMA.2011.087}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2861189}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294717500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855279138}
Linking options:
  • https://www.mathnet.ru/eng/sigma645
  • https://www.mathnet.ru/eng/sigma/v7/p87
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :66
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024