Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 083, 10 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.083
(Mi sigma641)
 

This article is cited in 21 scientific papers (total in 21 papers)

A Lorentz-Covariant Connection for Canonical Gravity

Marc Geillera, Marc Lachièze-Reya, Karim Nouib, Francesco Sardellib

a Laboratoire APC, Université Paris Diderot Paris 7, 75013 Paris, France
b LMPT, Université François Rabelais, Parc de Grandmont, 37200 Tours, France
References:
Abstract: We construct a Lorentz-covariant connection in the context of first order canonical gravity with non-vanishing Barbero–Immirzi parameter. To do so, we start with the phase space formulation derived from the canonical analysis of the Holst action in which the second class constraints have been solved explicitly. This allows us to avoid the use of Dirac brackets. In this context, we show that there is a “unique” Lorentz-covariant connection which is commutative in the sense of the Poisson bracket, and which furthermore agrees with the connection found by Alexandrov using the Dirac bracket. This result opens a new way toward the understanding of Lorentz-covariant loop quantum gravity.
Keywords: canonical gravity; first order gravity; Lorentz-invariance; second class constraints.
Received: May 27, 2011; in final form August 20, 2011; Published online August 24, 2011
Bibliographic databases:
Document Type: Article
MSC: 83C05; 83C45
Language: English
Citation: Marc Geiller, Marc Lachièze-Rey, Karim Noui, Francesco Sardelli, “A Lorentz-Covariant Connection for Canonical Gravity”, SIGMA, 7 (2011), 083, 10 pp.
Citation in format AMSBIB
\Bibitem{GeiLacNou11}
\by Marc Geiller, Marc Lachi\`eze-Rey, Karim Noui, Francesco Sardelli
\paper A Lorentz-Covariant Connection for Canonical Gravity
\jour SIGMA
\yr 2011
\vol 7
\papernumber 083
\totalpages 10
\mathnet{http://mi.mathnet.ru/sigma641}
\crossref{https://doi.org/10.3842/SIGMA.2011.083}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2861193}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294254600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855224285}
Linking options:
  • https://www.mathnet.ru/eng/sigma641
  • https://www.mathnet.ru/eng/sigma/v7/p83
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :45
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024