Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 080, 8 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.080
(Mi sigma638)
 

This article is cited in 1 scientific paper (total in 1 paper)

The 2-Transitive Transplantable Isospectral Drums

Jeroen Schillewaerta, Koen Thasb

a Department of Mathematics, Free University of Brussels (ULB), CP 216, Boulevard du Triomphe, B-1050 Brussels, Belgium
b Department of Mathematics, Ghent University, Krijgslaan 281, S25, B-9000 Ghent, Belgium
Full-text PDF (329 kB) Citations (1)
References:
Abstract: For Riemannian manifolds there are several examples which are isospectral but not isometric, see e.g. J. Milnor [Proc. Nat. Acad. Sci. USA 51 (1964), 542]; in the present paper, we investigate pairs of domains in $\mathbb R^2$ which are isospectral but not congruent. All known such counter examples to M. Kac's famous question can be constructed by a certain tiling method (“transplantability”) using special linear operator groups which act $2$-transitively on certain associated modules. In this paper we prove that if any operator group acts $2$-transitively on the associated module, no new counter examples can occur. In fact, the main result is a corollary of a result on Schreier coset graphs of $2$-transitive groups.
Keywords: isospectrality; drums; Riemannian manifold; doubly transitive group; linear group.
Received: December 14, 2010; in final form August 8, 2011; Published online August 18, 2011
Bibliographic databases:
Document Type: Article
Language: English
Citation: Jeroen Schillewaert, Koen Thas, “The 2-Transitive Transplantable Isospectral Drums”, SIGMA, 7 (2011), 080, 8 pp.
Citation in format AMSBIB
\Bibitem{SchTha11}
\by Jeroen Schillewaert, Koen Thas
\paper The 2-Transitive Transplantable Isospectral Drums
\jour SIGMA
\yr 2011
\vol 7
\papernumber 080
\totalpages 8
\mathnet{http://mi.mathnet.ru/sigma638}
\crossref{https://doi.org/10.3842/SIGMA.2011.080}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2861196}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293997300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896064116}
Linking options:
  • https://www.mathnet.ru/eng/sigma638
  • https://www.mathnet.ru/eng/sigma/v7/p80
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:264
    Full-text PDF :49
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024