Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 078, 19 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.078
(Mi sigma636)
 

Harmonic Analysis on Quantum Complex Hyperbolic Spaces

Olga Bershtein, Yevgen Kolisnyk

Institute for Low Temperature Physics and Engineering, 47 Lenin Ave., 61103, Kharkov, Ukraine
References:
Abstract: In this paper we obtain some results of harmonic analysis on quantum complex hyperbolic spaces. We introduce a quantum analog for the Laplace–Beltrami operator and its radial part. The latter appear to be second order $q$-difference operator, whose eigenfunctions are related to the Al-Salam–Chihara polynomials. We prove a Plancherel type theorem for it.
Keywords: quantum groups, harmonic analysis on quantum symmetric spaces; $q$-difference operators; Al-Salam–Chihara polynomials; Plancherel formula.
Received: April 30, 2011; in final form August 10, 2011; Published online August 18, 2011
Bibliographic databases:
Document Type: Article
Language: English
Citation: Olga Bershtein, Yevgen Kolisnyk, “Harmonic Analysis on Quantum Complex Hyperbolic Spaces”, SIGMA, 7 (2011), 078, 19 pp.
Citation in format AMSBIB
\Bibitem{BerKol11}
\by Olga Bershtein, Yevgen Kolisnyk
\paper Harmonic Analysis on Quantum Complex Hyperbolic Spaces
\jour SIGMA
\yr 2011
\vol 7
\papernumber 078
\totalpages 19
\mathnet{http://mi.mathnet.ru/sigma636}
\crossref{https://doi.org/10.3842/SIGMA.2011.078}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2861198}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293997300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896061615}
Linking options:
  • https://www.mathnet.ru/eng/sigma636
  • https://www.mathnet.ru/eng/sigma/v7/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024