Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 077, 17 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.077
(Mi sigma635)
 

This article is cited in 6 scientific papers (total in 6 papers)

Quantum Analogs of Tensor Product Representations of $\mathfrak{su}(1,1)$

Wolter Groenevelt

Delft Institute of Applied Mathematics, Technische Universiteit Delft, PO Box 5031, 2600 GA Delft, the Netherlands
Full-text PDF (439 kB) Citations (6)
References:
Abstract: We study representations of $\mathcal U_q(\mathfrak{su}(1,1))$ that can be considered as quantum analogs of tensor products of irreducible $*$-representations of the Lie algebra $\mathfrak{su}(1,1)$. We determine the decomposition of these representations into irreducible $*$-representations of $\mathcal U_q(\mathfrak{su}(1,1))$ by diagonalizing the action of the Casimir operator on suitable subspaces of the representation spaces. This leads to an interpretation of the big $q$-Jacobi polynomials and big $q$-Jacobi functions as quantum analogs of Clebsch–Gordan coefficients.
Keywords: tensor product representations; Clebsch–Gordan coefficients; big $q$-Jacobi functions.
Received: April 28, 2011; in final form August 4, 2011; Published online August 9, 2011
Bibliographic databases:
Document Type: Article
MSC: 20G42; 33D80
Language: English
Citation: Wolter Groenevelt, “Quantum Analogs of Tensor Product Representations of $\mathfrak{su}(1,1)$”, SIGMA, 7 (2011), 077, 17 pp.
Citation in format AMSBIB
\Bibitem{Gro11}
\by Wolter Groenevelt
\paper Quantum Analogs of Tensor Product Representations of $\mathfrak{su}(1,1)$
\jour SIGMA
\yr 2011
\vol 7
\papernumber 077
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma635}
\crossref{https://doi.org/10.3842/SIGMA.2011.077}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2861199}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293848700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855233897}
Linking options:
  • https://www.mathnet.ru/eng/sigma635
  • https://www.mathnet.ru/eng/sigma/v7/p77
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:193
    Full-text PDF :51
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024