Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 071, 20 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.071
(Mi sigma629)
 

This article is cited in 5 scientific papers (total in 5 papers)

From Quantum $A_N$ (Calogero) to $H_4$ (Rational) Model

Alexander V. Turbiner

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México, D.F., Mexico
Full-text PDF (463 kB) Citations (5)
References:
Abstract: A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by $(i)$ a discrete symmetry of the Hamiltonian, $(ii)$ a number of polynomial eigenfunctions, $(iii)$ a factorization property for eigenfunctions, and admit $(iv)$ the separation of the radial coordinate and, hence, the existence of the 2nd order integral, $(v)$ an algebraic form in invariants of a discrete symmetry group (in space of orbits).
Keywords: (quasi)-exact-solvability; rational models; algebraic forms; Coxeter (Weyl) invariants, hidden algebra.
Received: February 28, 2011; in final form July 12, 2011; Published online July 18, 2011
Bibliographic databases:
Document Type: Article
Language: English
Citation: Alexander V. Turbiner, “From Quantum $A_N$ (Calogero) to $H_4$ (Rational) Model”, SIGMA, 7 (2011), 071, 20 pp.
Citation in format AMSBIB
\Bibitem{Tur11}
\by Alexander V.~Turbiner
\paper From Quantum~$A_N$ (Calogero) to~$H_4$ (Rational) Model
\jour SIGMA
\yr 2011
\vol 7
\papernumber 071
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma629}
\crossref{https://doi.org/10.3842/SIGMA.2011.071}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2861205}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293474300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887193002}
Linking options:
  • https://www.mathnet.ru/eng/sigma629
  • https://www.mathnet.ru/eng/sigma/v7/p71
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:170
    Full-text PDF :45
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024