Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 070, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.070
(Mi sigma628)
 

This article is cited in 5 scientific papers (total in 5 papers)

Klein Topological Field Theories from Group Representations

Sergey A. Loktevab, Sergey M. Natanzoncab

a Institute of Theoretical and Experimental Physics, 25 Bolshaya Cheremushkinskaya Str., Moscow 117218, Russia
b Department of Mathematics, Higher School of Economics, 7 Vavilova Str., Moscow 117312, Russia
c A. N. Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, Moscow 119991, Russia
Full-text PDF (612 kB) Citations (5)
References:
Abstract: We show that any complex (respectively real) representation of finite group naturally generates a open-closed (respectively Klein) topological field theory over complex numbers. We relate the $1$-point correlator for the projective plane in this theory with the Frobenius–Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring.
Keywords: topological quantum field theory; group representation.
Received: December 15, 2010; in final form July 4, 2011; Published online July 16, 2011
Bibliographic databases:
Document Type: Article
MSC: 57R56; 20C05
Language: English
Citation: Sergey A. Loktev, Sergey M. Natanzon, “Klein Topological Field Theories from Group Representations”, SIGMA, 7 (2011), 070, 15 pp.
Citation in format AMSBIB
\Bibitem{LokNat11}
\by Sergey A.~Loktev, Sergey M.~Natanzon
\paper Klein Topological Field Theories from Group Representations
\jour SIGMA
\yr 2011
\vol 7
\papernumber 070
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma628}
\crossref{https://doi.org/10.3842/SIGMA.2011.070}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2861206}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293474300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855229361}
Linking options:
  • https://www.mathnet.ru/eng/sigma628
  • https://www.mathnet.ru/eng/sigma/v7/p70
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:259
    Full-text PDF :76
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024