Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 069, 24 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.069
(Mi sigma627)
 

This article is cited in 54 scientific papers (total in 54 papers)

The Universal Askey–Wilson Algebra

Paul Terwilliger

Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA
References:
Abstract: Let $\mathbb F$ denote a field, and fix a nonzero $q\in\mathbb F$ such that $q^4\not=1$. We define an associative $\mathbb F$-algebra $\Delta=\Delta_q$ by generators and relations in the following way. The generators are $A$, $B$, $C$. The relations assert that each of
\begin{gather*} A+\frac{qBC-q^{-1}CB}{q^2-q^{-2}},\qquad B+\frac{qCA-q^{-1}AC}{q^2-q^{-2}},\qquad C+\frac{qAB-q^{-1}BA}{q^2-q^{-2}} \end{gather*}
is central in $\Delta$. We call $\Delta$ the universal Askey–Wilson algebra. We discuss how $\Delta$ is related to the original Askey–Wilson algebra AW(3) introduced by A. Zhedanov. Multiply each of the above central elements by $q+q^{-1}$ to obtain $\alpha$, $\beta$, $\gamma$. We give an alternate presentation for $\Delta$ by generators and relations; the generators are $A$, $B$, $\gamma$. We give a faithful action of the modular group ${\rm {PSL}}_2(\mathbb Z)$ on $\Delta$ as a group of automorphisms; one generator sends $(A,B,C)\mapsto (B,C,A)$ and another generator sends $(A,B,\gamma)\mapsto (B,A,\gamma)$. We show that $\lbrace A^iB^jC^k \alpha^r\beta^s\gamma^t| i,j,k,r,s,t\geq 0\rbrace$ is a basis for the $\mathbb F$-vector space $\Delta$. We show that the center $Z(\Delta)$ contains the element
\begin{gather*} \Omega=qABC+q^2A^2+q^{-2}B^2+q^2C^2-qA\alpha-q^{-1}B\beta -q C\gamma. \end{gather*}
Under the assumption that $q$ is not a root of unity, we show that $Z(\Delta)$ is generated by $\Omega$, $\alpha$, $\beta$, $\gamma$ and that $Z(\Delta)$ is isomorphic to a polynomial algebra in 4 variables. Using the alternate presentation we relate $\Delta$ to the $q$-Onsager algebra. We describe the 2-sided ideal $\Delta\lbrack \Delta,\Delta\rbrack \Delta$ from several points of view. Our main result here is that $\Delta\lbrack \Delta,\Delta \rbrack \Delta + \mathbb F 1$ is equal to the intersection of $(i)$ the subalgebra of $\Delta$ generated by $A$, $B$; $(ii)$ the subalgebra of $\Delta$ generated by $B$, $C$; $(iii)$ the subalgebra of $\Delta $ generated by $C$, $A$.
Keywords: Askey–Wilson relations; Leonard pair; modular group; $q$-Onsager algebra.
Received: April 17, 2011; in final form July 9, 2011; Published online July 15, 2011
Bibliographic databases:
Document Type: Article
MSC: 33D80; 33D45
Language: English
Citation: Paul Terwilliger, “The Universal Askey–Wilson Algebra”, SIGMA, 7 (2011), 069, 24 pp.
Citation in format AMSBIB
\Bibitem{Ter11}
\by Paul Terwilliger
\paper The Universal Askey--Wilson Algebra
\jour SIGMA
\yr 2011
\vol 7
\papernumber 069
\totalpages 24
\mathnet{http://mi.mathnet.ru/sigma627}
\crossref{https://doi.org/10.3842/SIGMA.2011.069}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2861207}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293474300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855810991}
Linking options:
  • https://www.mathnet.ru/eng/sigma627
  • https://www.mathnet.ru/eng/sigma/v7/p69
  • This publication is cited in the following 54 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :64
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024