Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2006, Volume 2, 034, 8 pp.
DOI: https://doi.org/10.3842/SIGMA.2006.034
(Mi sigma62)
 

On Orthogonality Relations for Dual Discrete $q$-Ultraspherical Polynomials

Valentyna A. Grozaa, Ivan I. Kachurykb

a National Aviation University, 1 Komarov Ave., Kyiv, 03058 Ukraine
b Khmel'nyts'kyi National University, Khmel'nyts'kyi, Ukraine
References:
Abstract: The dual discrete $q$-ultraspherical polynomials $D_n^{(s)}(\mu(x;s)|q)$ correspond to indeterminate moment problem and, therefore, have one-parameter family of extremal orthogonality relations. It is shown that special cases of dual discrete $q$-ultraspherical polynomials $D_n^{(s)}(\mu(x;s)|q)$, when $s=q^{-1}$ and $s=q$, are directly connected with $q^{-1}$-Hermite polynomials. These connections are given in an explicit form. Using these relations, all extremal orthogonality relations for these special cases of polynomials $D_n^{(s)}(\mu(x;s)|q)$ are found.
Keywords: $q$-orthogonal polynomials; dual discrete $q$-ultraspherical polynomials; $q^{-1}$-Hermite polynomials; orthogonality relation.
Received: February 14, 2006; in final form February 28, 2006; Published online March 16, 2006
Bibliographic databases:
Document Type: Article
MSC: 33D45; 81Q99
Language: English
Citation: Valentyna A. Groza, Ivan I. Kachuryk, “On Orthogonality Relations for Dual Discrete $q$-Ultraspherical Polynomials”, SIGMA, 2 (2006), 034, 8 pp.
Citation in format AMSBIB
\Bibitem{GroKac06}
\by Valentyna A.~Groza, Ivan I.~Kachuryk
\paper On Orthogonality Relations for Dual Discrete $q$-Ultraspherical Polynomials
\jour SIGMA
\yr 2006
\vol 2
\papernumber 034
\totalpages 8
\mathnet{http://mi.mathnet.ru/sigma62}
\crossref{https://doi.org/10.3842/SIGMA.2006.034}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2217743}
\zmath{https://zbmath.org/?q=an:1099.33013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065100034}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236010}
Linking options:
  • https://www.mathnet.ru/eng/sigma62
  • https://www.mathnet.ru/eng/sigma/v2/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:161
    Full-text PDF :48
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024