Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 060, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.060
(Mi sigma618)
 

This article is cited in 5 scientific papers (total in 5 papers)

The BGG Complex on Projective Space

Michael G. Eastwooda, A. Rod Goverb

a Mathematical Sciences Institute, Australian National University, ACT 0200, Australia
b Department of Mathematics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
Full-text PDF (439 kB) Citations (5)
References:
Abstract: We give a complete construction of the Bernstein–Gelfand–Gelfand complex on real or complex projective space using minimal ingredients.
Keywords: differential complex; BGG complex; projective space; Lie algebra cohomology; parabolic geometry.
Received: January 30, 2011; in final form June 18, 2011; Published online June 23, 2011
Bibliographic databases:
Document Type: Article
Language: English
Citation: Michael G. Eastwood, A. Rod Gover, “The BGG Complex on Projective Space”, SIGMA, 7 (2011), 060, 18 pp.
Citation in format AMSBIB
\Bibitem{EasGov11}
\by Michael G.~Eastwood, A.~Rod Gover
\paper The BGG Complex on Projective Space
\jour SIGMA
\yr 2011
\vol 7
\papernumber 060
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma618}
\crossref{https://doi.org/10.3842/SIGMA.2011.060}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2861216}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000292092900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855240072}
Linking options:
  • https://www.mathnet.ru/eng/sigma618
  • https://www.mathnet.ru/eng/sigma/v7/p60
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024