Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 057, 13 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.057
(Mi sigma615)
 

This article is cited in 4 scientific papers (total in 4 papers)

Symmetry Operators and Separation of Variables for Dirac's Equation on Two-Dimensional Spin Manifolds

Alberto Carignanoa, Lorenzo Fatibeneb, Raymond G. McLenaghanc, Giovanni Rastellid

a Department of Engineering, University of Cambridge, United Kingdom
b Dipartimento di Matematica, Università di Torino, Italy
c Department of Applied Mathematics, University of Waterloo, Ontario, Canada
d Formerly at Dipartimento di Matematica, Università di Torino, Italy
Full-text PDF (309 kB) Citations (4)
References:
Abstract: A signature independent formalism is created and utilized to determine the general second-order symmetry operators for Dirac's equation on two-dimensional Lorentzian spin manifolds. The formalism is used to characterize the orthonormal frames and metrics that permit the solution of Dirac's equation by separation of variables in the case where a second-order symmetry operator underlies the separation. Separation of variables in complex variables on two-dimensional Minkowski space is also considered.
Keywords: Dirac equation; symmetry operators; separation of variables.
Received: February 1, 2011; in final form June 2, 2011; Published online June 15, 2011
Bibliographic databases:
Document Type: Article
MSC: 70S10; 81Q80
Language: English
Citation: Alberto Carignano, Lorenzo Fatibene, Raymond G. McLenaghan, Giovanni Rastelli, “Symmetry Operators and Separation of Variables for Dirac's Equation on Two-Dimensional Spin Manifolds”, SIGMA, 7 (2011), 057, 13 pp.
Citation in format AMSBIB
\Bibitem{CarFatMcl11}
\by Alberto Carignano, Lorenzo Fatibene, Raymond G.~McLenaghan, Giovanni Rastelli
\paper Symmetry Operators and Separation of Variables for Dirac's Equation on Two-Dimensional Spin Manifolds
\jour SIGMA
\yr 2011
\vol 7
\papernumber 057
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma615}
\crossref{https://doi.org/10.3842/SIGMA.2011.057}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2861219}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000292092300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855242232}
Linking options:
  • https://www.mathnet.ru/eng/sigma615
  • https://www.mathnet.ru/eng/sigma/v7/p57
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:545
    Full-text PDF :47
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024