Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 053, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.053
(Mi sigma611)
 

This article is cited in 4 scientific papers (total in 4 papers)

The Fourier $\mathsf U(2)$ Group and Separation of Discrete Variables

Kurt Bernardo Wolfa, Luis Edgar Vicentb

a Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Mor. 62210, México
b Deceased
References:
Abstract: The linear canonical transformations of geometric optics on two-dimensional screens form the group $\mathsf{Sp}(4,\mathfrak R)$, whose maximal compact subgroup is the Fourier group $\mathsf U(2)_\mathrm F$; this includes isotropic and anisotropic Fourier transforms, screen rotations and gyrations in the phase space of ray positions and optical momenta. Deforming classical optics into a Hamiltonian system whose positions and momenta range over a finite set of values, leads us to the finite oscillator model, which is ruled by the Lie algebra $\mathsf{so}(4)$. Two distinct subalgebra chains are used to model arrays of $N^2$ points placed along Cartesian or polar (radius and angle) coordinates, thus realizing one case of separation in two discrete coordinates. The $N^2$-vectors in this space are digital (pixellated) images on either of these two grids, related by a unitary transformation. Here we examine the unitary action of the analogue Fourier group on such images, whose rotations are particularly visible.
Keywords: discrete coordinates; Fourier $\mathsf U(2)$ group; Cartesian pixellation; polar pixellation.
Received: February 19, 2011; in final form May 26, 2011; Published online June 1, 2011
Bibliographic databases:
Document Type: Article
Language: English
Citation: Kurt Bernardo Wolf, Luis Edgar Vicent, “The Fourier $\mathsf U(2)$ Group and Separation of Discrete Variables”, SIGMA, 7 (2011), 053, 18 pp.
Citation in format AMSBIB
\Bibitem{WolVic11}
\by Kurt Bernardo Wolf, Luis Edgar Vicent
\paper The Fourier $\mathsf U(2)$ Group and Separation of Discrete Variables
\jour SIGMA
\yr 2011
\vol 7
\papernumber 053
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma611}
\crossref{https://doi.org/10.3842/SIGMA.2011.053}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2804583}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000291097300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855218148}
Linking options:
  • https://www.mathnet.ru/eng/sigma611
  • https://www.mathnet.ru/eng/sigma/v7/p53
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:690
    Full-text PDF :47
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024