Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 048, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.048
(Mi sigma606)
 

This article is cited in 29 scientific papers (total in 29 papers)

Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform

Ángel Ballesterosa, Alberto Encisob, Francisco J. Herranza, Orlando Ragniscocd, Danilo Riglionicd

a Departamento de Física, Universidad de Burgos, E-09001 Burgos, Spain
b Instituto de Ciencias Matemáticas (CSIC-UAM-UCM-UC3M), Consejo Superior de Investigaciones Cientícas, C/ Nicolás Cabrera 14-16, E-28049 Madrid, Spain
c Università degli Studi Roma Tre, Dipartimento di Fisica E. Amaldi
d Dipartimento di Fisica, Università di Roma Tre and Istituto Nazionale di Fisica Nucleare sezione di Roma Tre, Via Vasca Navale 84, I-00146 Roma, Italy
References:
Abstract: The Stäckel transform is applied to the geodesic motion on Euclidean space, through the harmonic oscillator and Kepler–Coloumb potentials, in order to obtain maximally superintegrable classical systems on $N$-dimensional Riemannian spaces of nonconstant curvature. By one hand, the harmonic oscillator potential leads to two families of superintegrable systems which are interpreted as an intrinsic Kepler–Coloumb system on a hyperbolic curved space and as the so-called Darboux III oscillator. On the other, the Kepler–Coloumb potential gives rise to an oscillator system on a spherical curved space as well as to the Taub-NUT oscillator. Their integrals of motion are explicitly given. The role of the (flat/curved) Fradkin tensor and Laplace–Runge–Lenz $N$-vector for all of these Hamiltonians is highlighted throughout the paper. The corresponding quantum maximally superintegrable systems are also presented.
Keywords: coupling constant metamorphosis; integrable systems; curvature; harmonic oscillator; Kepler–Coulomb; Fradkin tensor; Laplace–Runge–Lenz vector; Taub-NUT; Darboux surfaces.
Received: March 18, 2011; in final form May 12, 2011; Published online May 14, 2011
Bibliographic databases:
Document Type: Article
MSC: 37J35; 70H06; 81R12
Language: English
Citation: Ángel Ballesteros, Alberto Enciso, Francisco J. Herranz, Orlando Ragnisco, Danilo Riglioni, “Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform”, SIGMA, 7 (2011), 048, 15 pp.
Citation in format AMSBIB
\Bibitem{BalEncHer11}
\by \'Angel~Ballesteros, Alberto Enciso, Francisco J.~Herranz, Orlando Ragnisco, Danilo Riglioni
\paper Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the St\"ackel Transform
\jour SIGMA
\yr 2011
\vol 7
\papernumber 048
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma606}
\crossref{https://doi.org/10.3842/SIGMA.2011.048}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2804588}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290556600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855223715}
Linking options:
  • https://www.mathnet.ru/eng/sigma606
  • https://www.mathnet.ru/eng/sigma/v7/p48
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:445
    Full-text PDF :69
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024