Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 045, 22 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.045
(Mi sigma603)
 

This article is cited in 5 scientific papers (total in 5 papers)

The Lattice Structure of Connection Preserving Deformations for $q$-Painlevé Equations I

Christopher M. Ormerod

La Trobe University, Department of Mathematics and Statistics, Bundoora VIC 3086, Australia
Full-text PDF (428 kB) Citations (5)
References:
Abstract: We wish to explore a link between the Lax integrability of the $q$-Painlevé equations and the symmetries of the $q$-Painlevé equations. We shall demonstrate that the connection preserving deformations that give rise to the $q$-Painlevé equations may be thought of as elements of the groups of Schlesinger transformations of their associated linear problems. These groups admit a very natural lattice structure. Each Schlesinger transformation induces a Bäcklund transformation of the $q$-Painlevé equation. Each translational Bäcklund transformation may be lifted to the level of the associated linear problem, effectively showing that each translational Bäcklund transformation admits a Lax pair. We will demonstrate this framework for the $q$-Painlevé equations up to and including $q$-$\mathrm{P}_{\mathrm{VI}}$.
Keywords: $q$-Painlevé; Lax pairs; $q$-Schlesinger transformations; connection; isomonodromy.
Received: November 26, 2010; in final form May 3, 2011; Published online May 7, 2011
Bibliographic databases:
Document Type: Article
MSC: 34M55; 39A13
Language: English
Citation: Christopher M. Ormerod, “The Lattice Structure of Connection Preserving Deformations for $q$-Painlevé Equations I”, SIGMA, 7 (2011), 045, 22 pp.
Citation in format AMSBIB
\Bibitem{Orm11}
\by Christopher M.~Ormerod
\paper The Lattice Structure of Connection Preserving Deformations for $q$-Painlev\'e Equations~I
\jour SIGMA
\yr 2011
\vol 7
\papernumber 045
\totalpages 22
\mathnet{http://mi.mathnet.ru/sigma603}
\crossref{https://doi.org/10.3842/SIGMA.2011.045}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2804591}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290295800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855245396}
Linking options:
  • https://www.mathnet.ru/eng/sigma603
  • https://www.mathnet.ru/eng/sigma/v7/p45
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:152
    Full-text PDF :45
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024