Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 041, 11 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.041
(Mi sigma599)
 

This article is cited in 1 scientific paper (total in 1 paper)

Periodic and Solitary Wave Solutions of Two Component Zakharov–Yajima–Oikawa System, Using Madelung's Approach

Anca Visinescua, Dan Grecua, Renato Fedelebc, Sergio De Nicolad

a Department of Theoretical Physics, National Institute for Physics and Nuclear Engineering, Bucharest, Romania
b Dipartimento di Scienze Fisiche, Universita Federico II
c INFN Sezione di Napoli, Napoli, Italy
d Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche, Pozuolli, (Na), Italy
Full-text PDF (318 kB) Citations (1)
References:
Abstract: Using the multiple scales method, the interaction between two bright and one dark solitons is studied. Provided that a long wave-short wave resonance condition is satisfied, the two-component Zakharov–Yajima–Oikawa (ZYO) completely integrable system is obtained. By using a Madelung fluid description, the one-soliton solutions of the corresponding ZYO system are determined. Furthermore, a discussion on the interaction between one bright and two dark solitons is presented. In particular, this problem is reduced to solve a one-component ZYO system in the resonance conditions.
Keywords: dark-bright solitons; nonlinear Schrödinger equation; Zakharov–Yajima–Oikawa system; Madelung fluid approach.
Received: February 10, 2011; in final form April 19, 2011; Published online April 23, 2011
Bibliographic databases:
Document Type: Article
MSC: 35Q55; 37K10; 45G15
Language: English
Citation: Anca Visinescu, Dan Grecu, Renato Fedele, Sergio De Nicola, “Periodic and Solitary Wave Solutions of Two Component Zakharov–Yajima–Oikawa System, Using Madelung's Approach”, SIGMA, 7 (2011), 041, 11 pp.
Citation in format AMSBIB
\Bibitem{VisGreFed11}
\by Anca Visinescu, Dan Grecu, Renato Fedele, Sergio De Nicola
\paper Periodic and Solitary Wave Solutions of Two Component Zakharov--Yajima--Oikawa System, Using Madelung's Approach
\jour SIGMA
\yr 2011
\vol 7
\papernumber 041
\totalpages 11
\mathnet{http://mi.mathnet.ru/sigma599}
\crossref{https://doi.org/10.3842/SIGMA.2011.041}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2804595}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000289767700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855231364}
Linking options:
  • https://www.mathnet.ru/eng/sigma599
  • https://www.mathnet.ru/eng/sigma/v7/p41
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:373
    Full-text PDF :43
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024