Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 038, 12 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.038
(Mi sigma596)
 

This article is cited in 15 scientific papers (total in 15 papers)

First Integrals of Extended Hamiltonians in $n+1$ Dimensions Generated by Powers of an Operator

Claudia Chanua, Luca Degiovannib, Giovanni Rastellib

a Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Milano, via Cozzi 53, Italia
b Formerly at Dipartimento di Matematica, Università di Torino, Torino, via Carlo Alberto 10, Italia
References:
Abstract: We describe a procedure to construct polynomial in the momenta first integrals of arbitrarily high degree for natural Hamiltonians $H$ obtained as one-dimensional extensions of natural (geodesic) $n$-dimensional Hamiltonians $L$. The Liouville integrability of $L$ implies the (minimal) superintegrability of $H$. We prove that, as a consequence of natural integrability conditions, it is necessary for the construction that the curvature of the metric tensor associated with $L$ is constant. As examples, the procedure is applied to one-dimensional $L$, including and improving earlier results, and to two and three-dimensional $L$, providing new superintegrable systems.
Keywords: superintegrable Hamiltonian systems; polynomial first integrals; constant curvature; Hessian tensor.
Received: January 31, 2011; in final form April 3, 2011; Published online April 11, 2011
Bibliographic databases:
Document Type: Article
MSC: 70H06; 70H33; 53C21
Language: English
Citation: Claudia Chanu, Luca Degiovanni, Giovanni Rastelli, “First Integrals of Extended Hamiltonians in $n+1$ Dimensions Generated by Powers of an Operator”, SIGMA, 7 (2011), 038, 12 pp.
Citation in format AMSBIB
\Bibitem{ChaDegRas11}
\by Claudia Chanu, Luca Degiovanni, Giovanni Rastelli
\paper First Integrals of Extended Hamiltonians in $n+1$ Dimensions Generated by Powers of an Operator
\jour SIGMA
\yr 2011
\vol 7
\papernumber 038
\totalpages 12
\mathnet{http://mi.mathnet.ru/sigma596}
\crossref{https://doi.org/10.3842/SIGMA.2011.038}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2804558}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000289276300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-82655187071}
Linking options:
  • https://www.mathnet.ru/eng/sigma596
  • https://www.mathnet.ru/eng/sigma/v7/p38
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :47
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024