Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 018, 24 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.018
(Mi sigma576)
 

This article is cited in 4 scientific papers (total in 4 papers)

Planarizable Supersymmetric Quantum Toboggans

Miloslav Znojil

Nuclear Physics Institute ASCR, 250 68 Rež, Czech Republic
Full-text PDF (997 kB) Citations (4)
References:
Abstract: In supersymmetric quantum mechanics the emergence of a singularity may lead to the breakdown of isospectrality between partner potentials. One of the regularization recipes is based on a topologically nontrivial, multisheeted complex deformations of the line of coordinate $x$ giving the so called quantum toboggan models (QTM). The consistent theoretical background of this recipe is briefly reviewed. Then, certain supersymmetric QTM pairs are shown exceptional and reducible to doublets of non-singular ordinary differential equations a.k.a. Sturm–Schrödinger equations containing a weighted energy $E\to E W(x)$ and living in single complex plane.
Keywords: supersymmetry; Schrödinger equation; complexified coordinates; changes of variables; single-complex-plane images of Riemann surfaces.
Received: November 30, 2010; in final form February 21, 2011; Published online February 25, 2011
Bibliographic databases:
Document Type: Article
Language: English
Citation: Miloslav Znojil, “Planarizable Supersymmetric Quantum Toboggans”, SIGMA, 7 (2011), 018, 24 pp.
Citation in format AMSBIB
\Bibitem{Zno11}
\by Miloslav Znojil
\paper Planarizable Supersymmetric Quantum Toboggans
\jour SIGMA
\yr 2011
\vol 7
\papernumber 018
\totalpages 24
\mathnet{http://mi.mathnet.ru/sigma576}
\crossref{https://doi.org/10.3842/SIGMA.2011.018}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2804578}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287879000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855221060}
Linking options:
  • https://www.mathnet.ru/eng/sigma576
  • https://www.mathnet.ru/eng/sigma/v7/p18
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:270
    Full-text PDF :44
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024