Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 014, 12 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.014
(Mi sigma572)
 

Schrödinger-like Dilaton Gravity

Yu Nakayamaab

a Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582, Japan
b Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720, USA
References:
Abstract: We investigate possibilities for a Schrödinger-like gravity with the dynamical critical exponent $z=2$, where the action only contains the first-order time derivative. The Horava gravity always admits such a relevant deformation because the full ($d+1$) dimensional diffeomorphism of the Einstein gravity is replaced by the foliation preserving diffeomorphism. The dynamics is locally trivial or topological in the pure gravity case, but we can construct a dynamical field theory with a $z=2$ dispersion relation by introducing a dilaton degree of freedom. Our model provides a classical starting point for the possible quantum dilaton gravity which may be applied to a membrane quantization.
Keywords: non-relativistic gravity; membrane quantization.
Received: September 16, 2010; in final form February 2, 2011; Published online February 8, 2011
Bibliographic databases:
Document Type: Article
MSC: 83D05
Language: English
Citation: Yu Nakayama, “Schrödinger-like Dilaton Gravity”, SIGMA, 7 (2011), 014, 12 pp.
Citation in format AMSBIB
\Bibitem{Nak11}
\by Yu Nakayama
\paper Schr\"odinger-like Dilaton Gravity
\jour SIGMA
\yr 2011
\vol 7
\papernumber 014
\totalpages 12
\mathnet{http://mi.mathnet.ru/sigma572}
\crossref{https://doi.org/10.3842/SIGMA.2011.014}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2771080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287393000013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855219115}
Linking options:
  • https://www.mathnet.ru/eng/sigma572
  • https://www.mathnet.ru/eng/sigma/v7/p14
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :54
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024