Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 013, 9 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.013
(Mi sigma571)
 

This article is cited in 11 scientific papers (total in 11 papers)

Shifted Riccati Procedure: Application to Conformal Barotropic FRW Cosmologies

Haret C. Rosua, Kira V. Khmelnytskayab

a IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosí, Mexico
b Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas C.P. 76010 Santiago de Querétaro, Qro. Mexico
References:
Abstract: In the case of barotropic FRW cosmologies, the Hubble parameter in conformal time is the solution of a simple Riccati equation of constant coefficients. We consider these cosmologies in the framework of nonrelativistic supersymmetry that has been effective in the area of supersymmetric quantum mechanics. Recalling that Faraoni [<i>Amer. J. Phys.</i> <b>67</b> (1999), 732–734] showed how to reduce the barotropic FRW system of differential equations to simple harmonic oscillator differential equations, we set the latter equations in the supersymmetric approach and divide their solutions into two classes of ‘bosonic’ (nonsingular) and ‘fermionic’ (singular) cosmological zero-mode solutions. The fermionic equations can be considered as representing cosmologies of Stephani type, i.e., inhomogeneous and curvature-changing in the conformal time. We next apply the so-called shifted Riccati procedure by introducing a constant additive parameter, denoted by $S$, in the common Riccati solution of these supersymmetric partner cosmologies. This leads to barotropic Stephani cosmologies with periodic singularities in their spatial curvature indices that we call $\mathcal{U}$ and $\mathcal{V}$ cosmologies, the first being of bosonic type and the latter of fermionic type. We solve completely these cyclic singular cosmologies at the level of their zero modes showing that an acceptable shift parameter should be purely imaginary, which in turn introduces a parity-time (PT) property of the partner curvature indices.
Keywords: factorization; shifted Riccati procedure; barotropic FRW cosmologies; cosmological zero-modes.
Received: November 30, 2010; in final form January 28, 2011; Published online February 2, 2011
Bibliographic databases:
Document Type: Article
MSC: 81Q60
Language: English
Citation: Haret C. Rosu, Kira V. Khmelnytskaya, “Shifted Riccati Procedure: Application to Conformal Barotropic FRW Cosmologies”, SIGMA, 7 (2011), 013, 9 pp.
Citation in format AMSBIB
\Bibitem{RosKhm11}
\by Haret C.~Rosu, Kira V.~Khmelnytskaya
\paper Shifted Riccati Procedure: Application to Conformal Barotropic FRW Cosmologies
\jour SIGMA
\yr 2011
\vol 7
\papernumber 013
\totalpages 9
\mathnet{http://mi.mathnet.ru/sigma571}
\crossref{https://doi.org/10.3842/SIGMA.2011.013}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2771081}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287393000012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84881596376}
Linking options:
  • https://www.mathnet.ru/eng/sigma571
  • https://www.mathnet.ru/eng/sigma/v7/p13
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:306
    Full-text PDF :56
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024