Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 010, 26 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.010
(Mi sigma568)
 

This article is cited in 1 scientific paper (total in 1 paper)

Integration of Cocycles and Lefschetz Number Formulae for Differential Operators

Ajay C. Ramadoss

Department Mathematik, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
Full-text PDF (580 kB) Citations (1)
References:
Abstract: Let $\mathcal E$ be a holomorphic vector bundle on a complex manifold $X$ such that $\dim_{\mathbb C}X=n$. Given any continuous, basic Hochschild $2n$-cocycle $\psi_{2n}$ of the algebra $\operatorname{Diff}_n$ of formal holomorphic differential operators, one obtains a $2n$-form $f_{\mathcal E,\psi_{2n}}(\mathcal D)$ from any holomorphic differential operator $\mathcal D$ on $\mathcal E$. We apply our earlier results [<i>J. Noncommut. Geom.</i> <b>2</b> (2008), 405–448; <i>J. Noncommut. Geom.</i> <b>3</b> (2009), 27–45] to show that $\int_X f_{\mathcal E,\psi_{2n}}(\mathcal D)$ gives the Lefschetz number of $\mathcal D$ upto a constant independent of $X$ and $\mathcal E$. In addition, we obtain a “local” result generalizing the above statement. When $\psi_{2n}$ is the cocycle from [<i>Duke Math. J.</i> <b>127</b> (2005), 487–517], we obtain a new proof as well as a generalization of the Lefschetz number theorem of Engeli–Felder. We also obtain an analogous “local” result pertaining to B. Shoikhet's construction of the holomorphic noncommutative residue of a differential operator for trivial vector bundles on complex parallelizable manifolds. This enables us to give a rigorous construction of the holomorphic noncommutative residue of $\mathcal D$ defined by B. Shoikhet when $\mathcal E$ is an arbitrary vector bundle on an arbitrary compact complex manifold $X$. Our local result immediately yields a proof of a generalization of Conjecture 3.3 of [<i>Geom. Funct. Anal.</i> <b>11</b> (2001), 1096–1124].
Keywords: Hochschild homology; Lie algebra homology; Lefschetz number; Fedosov connection; trace density; holomorphic noncommutative residue.
Received: August 12, 2010; in final form January 7, 2011; Published online January 18, 2011
Bibliographic databases:
Document Type: Article
Language: English
Citation: Ajay C. Ramadoss, “Integration of Cocycles and Lefschetz Number Formulae for Differential Operators”, SIGMA, 7 (2011), 010, 26 pp.
Citation in format AMSBIB
\Bibitem{Ram11}
\by Ajay C.~Ramadoss
\paper Integration of Cocycles and Lefschetz Number Formulae for Differential Operators
\jour SIGMA
\yr 2011
\vol 7
\papernumber 010
\totalpages 26
\mathnet{http://mi.mathnet.ru/sigma568}
\crossref{https://doi.org/10.3842/SIGMA.2011.010}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2771084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287393000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896060309}
Linking options:
  • https://www.mathnet.ru/eng/sigma568
  • https://www.mathnet.ru/eng/sigma/v7/p10
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :46
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024