Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2011, Volume 7, 003, 7 pp.
DOI: https://doi.org/10.3842/SIGMA.2011.003
(Mi sigma561)
 

This article is cited in 1 scientific paper (total in 1 paper)

Intertwinors on Functions over the Product of Spheres

Doojin Hong

Department of Mathematics, University of North Dakota, Grand Forks ND 58202, USA
Full-text PDF (298 kB) Citations (1)
References:
Abstract: We give explicit formulas for the intertwinors on the scalar functions over the product of spheres with the natural pseudo-Riemannian product metric using the spectrum generating technique. As a consequence, this provides another proof of the even order conformally invariant differential operator formulas obtained earlier by T. Branson and the present author.
Keywords: intertwinors; conformally invariant operators.
Received: August 23, 2010; in final form December 30, 2010; Published online January 6, 2011
Bibliographic databases:
Document Type: Article
MSC: 53A30; 53C50
Language: English
Citation: Doojin Hong, “Intertwinors on Functions over the Product of Spheres”, SIGMA, 7 (2011), 003, 7 pp.
Citation in format AMSBIB
\Bibitem{Hon11}
\by Doojin Hong
\paper Intertwinors on Functions over the Product of Spheres
\jour SIGMA
\yr 2011
\vol 7
\papernumber 003
\totalpages 7
\mathnet{http://mi.mathnet.ru/sigma561}
\crossref{https://doi.org/10.3842/SIGMA.2011.003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2771091}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287393000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896063928}
Linking options:
  • https://www.mathnet.ru/eng/sigma561
  • https://www.mathnet.ru/eng/sigma/v7/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024