Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2010, Volume 6, 084, 16 pp.
DOI: https://doi.org/10.3842/SIGMA.2010.084
(Mi sigma542)
 

This article is cited in 6 scientific papers (total in 6 papers)

Hypergeometric $\tau$ Functions of the $q$-Painlevé Systems of Type $(A_2+A_1)^{(1)}$

Nobutaka Nakazono

Graduate School of Mathematics, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
Full-text PDF (279 kB) Citations (6)
References:
Abstract: We consider a $q$-Painlevé III equation and a $q$-Painlevé II equation arising from a birational representation of the affine Weyl group of type $(A_2+A_1)^{(1)}$. We study their hypergeometric solutions on the level of $\tau$ functions.
Keywords: $q$-Painlevé system; hypergeometric function; affine Weyl group; $\tau$ function.
Received: August 17, 2010; in final form October 8, 2010; Published online October 14, 2010
Bibliographic databases:
Document Type: Article
Language: English
Citation: Nobutaka Nakazono, “Hypergeometric $\tau$ Functions of the $q$-Painlevé Systems of Type $(A_2+A_1)^{(1)}$”, SIGMA, 6 (2010), 084, 16 pp.
Citation in format AMSBIB
\Bibitem{Nak10}
\by Nobutaka Nakazono
\paper Hypergeometric $\tau$ Functions of the $q$-Painlev\'e Systems of Type $(A_2+A_1)^{(1)}$
\jour SIGMA
\yr 2010
\vol 6
\papernumber 084
\totalpages 16
\mathnet{http://mi.mathnet.ru/sigma542}
\crossref{https://doi.org/10.3842/SIGMA.2010.084}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2769931}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000283182800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896060302}
Linking options:
  • https://www.mathnet.ru/eng/sigma542
  • https://www.mathnet.ru/eng/sigma/v6/p84
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024