Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2006, Volume 2, 026, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2006.026
(Mi sigma54)
 

This article is cited in 8 scientific papers (total in 8 papers)

Functional Integral Approaches to the Bosonization of Effective Multi-Quark Interactions with $U_{\mathrm{A}}(1)$ Breaking

Brigitte Hillera, Alexander A. Osipovb, Véronique Bernardc, Alex H. Blina

a Centro de Física Teórica, Departamento de Física da Universidade de Coimbra, 3004-516 Coimbra, Portugal
b Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
c Laboratoire de Physique Théorique 3-5, Université Louis Pasteur, rue de l’Université, F-67084 Strasbourg, France
Full-text PDF (308 kB) Citations (8)
References:
Abstract: Low energy hadron phenomenology involving the (u,d,s) quarks is often approached through effective multi-quark Lagrangians with the symmetries of QCD. A very successful approach consists in taking the four-quark Nambu–Jona-Lasinio Lagrangian with the chiral $U_L(3)\times U_R(3)$ symmetry in the massless limit, combined with the $U_{\mathrm{A}}(1)$ breaking six-quark flavour determinant interaction of 't Hooft. We review the present status and some very recent developments related to the functional integration over the cubic term in auxiliary mesonic variables that one introduces to bosonize the system. Various approaches for handling this functional, which cannot be integrated exactly, are discussed: the stationary phase approximation, the perturbative expansion, the loop expansion, their interrelation and importance for the evaluation of the effective action. The intricate group structure rules out the method of Airy's integral. The problem of the instability of the vacuum is stated and a solution given by including eight-quark interactions.
Keywords: field theory; functional integral methods; stationary phase method; 't Hooft interactions; semiclassical corrections; effective action.
Received: October 27, 2005; in final form February 13, 2006; Published online February 23, 2006
Bibliographic databases:
Document Type: Article
MSC: 81T10
Language: English
Citation: Brigitte Hiller, Alexander A. Osipov, Véronique Bernard, Alex H. Blin, “Functional Integral Approaches to the Bosonization of Effective Multi-Quark Interactions with $U_{\mathrm{A}}(1)$ Breaking”, SIGMA, 2 (2006), 026, 18 pp.
Citation in format AMSBIB
\Bibitem{HilOsiBer06}
\by Brigitte Hiller, Alexander~A.~Osipov, V{\'e}ronique Bernard, Alex H. Blin
\paper Functional Integral Approaches to the Bosonization of Effective Multi-Quark Interactions with $U_{\mathrm{A}}(1)$ Breaking
\jour SIGMA
\yr 2006
\vol 2
\papernumber 026
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma54}
\crossref{https://doi.org/10.3842/SIGMA.2006.026}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2217735}
\zmath{https://zbmath.org/?q=an:1093.81060}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065100026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234824}
Linking options:
  • https://www.mathnet.ru/eng/sigma54
  • https://www.mathnet.ru/eng/sigma/v2/p26
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024