Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2010, Volume 6, 078, 11 pp.
DOI: https://doi.org/10.3842/SIGMA.2010.078
(Mi sigma536)
 

This article is cited in 8 scientific papers (total in 8 papers)

A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function ${}_{n+1}F_n$

Takao Suzuki

Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan
Full-text PDF (201 kB) Citations (8)
References:
Abstract: In a recent work, we proposed the coupled Painlevé VI system with $A^{(1)}_{2n+1}$-symmetry, which is a higher order generalization of the sixth Painlevé equation ($P_{\rm{VI}}$). In this article, we present its particular solution expressed in terms of the hypergeometric function ${}_{n+1}F_n$. We also discuss a degeneration structure of the Painlevé system derived from the confluence of ${}_{n+1}F_n$.
Keywords: affine Weyl group; generalized hypergeometric functions; Painlevé equations.
Received: June 23, 2010; in final form September 29, 2010; Published online October 7, 2010
Bibliographic databases:
Document Type: Article
MSC: 17B80; 33C20; 34M55
Language: English
Citation: Takao Suzuki, “A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function ${}_{n+1}F_n$”, SIGMA, 6 (2010), 078, 11 pp.
Citation in format AMSBIB
\Bibitem{Suz10}
\by Takao Suzuki
\paper A~Particular Solution of a~Painlev\'e System in Terms of the Hypergeometric Function ${}_{n+1}F_n$
\jour SIGMA
\yr 2010
\vol 6
\papernumber 078
\totalpages 11
\mathnet{http://mi.mathnet.ru/sigma536}
\crossref{https://doi.org/10.3842/SIGMA.2010.078}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2769937}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282827600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896058638}
Linking options:
  • https://www.mathnet.ru/eng/sigma536
  • https://www.mathnet.ru/eng/sigma/v6/p78
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024