Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2010, Volume 6, 065, 9 pp.
DOI: https://doi.org/10.3842/SIGMA.2010.065
(Mi sigma522)
 

This article is cited in 24 scientific papers (total in 24 papers)

Double Affine Hecke Algebras of Rank 1 and the $\mathbb Z_3$-Symmetric Askey–Wilson Relations

Tatsuro Itoa, Paul Terwilligerb

a Division of Mathematical and Physical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma- machi, Kanazawa 920-1192, Japan
b Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, WI 53706-1388, USA
References:
Abstract: We consider the double affine Hecke algebra $H=H(k_0,k_1,k^\vee_0,k^\vee_1;q)$ associated with the root system $(C^\vee_1,C_1)$. We display three elements $x$, $y$, $z$ in $H$ that satisfy essentially the $\mathbb Z_3$-symmetric Askey–Wilson relations. We obtain the relations as follows. We work with an algebra $\hat H$ that is more general than $H$, called the universal double affine Hecke algebra of type $(C_1^\vee,C_1)$. An advantage of $\hat H$ over $H$ is that it is parameter free and has a larger automorphism group. We give a surjective algebra homomorphism $\hat H\to H$. We define some elements $x$, $y$, $z$ in $\hat H$ that get mapped to their counterparts in $H$ by this homomorphism. We give an action of Artin's braid group $B_3$ on $\hat H$ that acts nicely on the elements $x$, $y$, $z$; one generator sends $x\mapsto y\mapsto z \mapsto x$ and another generator interchanges $x$, $y$. Using the $B_3$ action we show that the elements $x$, $y$, $z$ in $\hat H$ satisfy three equations that resemble the $\mathbb Z_3$-symmetric Askey–Wilson relations. Applying the homomorphism ${\hat H}\to H$ we find that the elements $x$, $y$, $z$ in $H$ satisfy similar relations.
Keywords: Askey–Wilson polynomials; Askey–Wilson relations; braid group.
Received: January 23, 2010; in final form August 10, 2010; Published online August 17, 2010
Bibliographic databases:
Document Type: Article
MSC: 33D80; 33D45
Language: English
Citation: Tatsuro Ito, Paul Terwilliger, “Double Affine Hecke Algebras of Rank 1 and the $\mathbb Z_3$-Symmetric Askey–Wilson Relations”, SIGMA, 6 (2010), 065, 9 pp.
Citation in format AMSBIB
\Bibitem{ItoTer10}
\by Tatsuro Ito, Paul Terwilliger
\paper Double Affine Hecke Algebras of Rank~1 and the $\mathbb Z_3$-Symmetric Askey--Wilson Relations
\jour SIGMA
\yr 2010
\vol 6
\papernumber 065
\totalpages 9
\mathnet{http://mi.mathnet.ru/sigma522}
\crossref{https://doi.org/10.3842/SIGMA.2010.065}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2725018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281824700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055179591}
Linking options:
  • https://www.mathnet.ru/eng/sigma522
  • https://www.mathnet.ru/eng/sigma/v6/p65
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024