Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2010, Volume 6, 057, 24 pp.
DOI: https://doi.org/10.3842/SIGMA.2010.057
(Mi sigma514)
 

This article is cited in 29 scientific papers (total in 29 papers)

A View on Optimal Transport from Noncommutative Geometry

Francesco D'Andreaa, Pierre Martinettib

a Ecole de Mathématique, Univ. Catholique de Louvain, Chemin du Cyclotron 2, 1348 Louvain-La-Neuve, Belgium
b Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
References:
Abstract: We discuss the relation between the Wasserstein distance of order 1 between probability distributions on a metric space, arising in the study of Monge–Kantorovich transport problem, and the spectral distance of noncommutative geometry. Starting from a remark of Rieffel on compact manifolds, we first show that on any – i.e. non-necessary compact – complete Riemannian spin manifolds, the two distances coincide. Then, on convex manifolds in the sense of Nash embedding, we provide some natural upper and lower bounds to the distance between any two probability distributions. Specializing to the Euclidean space $\mathbb R^n$, we explicitly compute the distance for a particular class of distributions generalizing Gaussian wave packet. Finally we explore the analogy between the spectral and the Wasserstein distances in the noncommutative case, focusing on the standard model and the Moyal plane. In particular we point out that in the two-sheet space of the standard model, an optimal-transport interpretation of the metric requires a cost function that does not vanish on the diagonal. The latest is similar to the cost function occurring in the relativistic heat equation.
Keywords: noncommutative geometry; spectral triples; transport theory.
Received: April 14, 2010; in final form July 8, 2010; Published online July 20, 2010
Bibliographic databases:
Document Type: Article
MSC: 58B34; 82C70
Language: English
Citation: Francesco D'Andrea, Pierre Martinetti, “A View on Optimal Transport from Noncommutative Geometry”, SIGMA, 6 (2010), 057, 24 pp.
Citation in format AMSBIB
\Bibitem{DanMar10}
\by Francesco D'Andrea, Pierre Martinetti
\paper A~View on Optimal Transport from Noncommutative Geometry
\jour SIGMA
\yr 2010
\vol 6
\papernumber 057
\totalpages 24
\mathnet{http://mi.mathnet.ru/sigma514}
\crossref{https://doi.org/10.3842/SIGMA.2010.057}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2725026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000280763100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896062376}
Linking options:
  • https://www.mathnet.ru/eng/sigma514
  • https://www.mathnet.ru/eng/sigma/v6/p57
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:299
    Full-text PDF :60
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024