Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2010, Volume 6, 044, 29 pp.
DOI: https://doi.org/10.3842/SIGMA.2010.044
(Mi sigma501)
 

This article is cited in 12 scientific papers (total in 12 papers)

Multi-Component NLS Models on Symmetric Spaces: Spectral Properties versus Representations Theory

V. S. Gerdjikova, G. G. Grahovskiab

a Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko chaussee, 1784 Sofia, Bulgaria
b School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
References:
Abstract: The algebraic structure and the spectral properties of a special class of multi-component NLS equations, related to the symmetric spaces of $\mathbf{BD.I}$-type are analyzed. The focus of the study is on the spectral theory of the relevant Lax operators for different fundamental representations of the underlying simple Lie algebra $\mathfrak g$. Special attention is paid to the structure of the dressing factors in spinor representation of the orthogonal simple Lie algebras of $\mathbf B_r\simeq so(2r+1,\mathbb C)$ type.
Keywords: multi-component MNLS equations, reduction group, Riemann–Hilbert problem, spectral decompositions, representation theory.
Received: January 20, 2010; in final form May 24, 2010; Published online June 2, 2010
Bibliographic databases:
Document Type: Article
Language: English
Citation: V. S. Gerdjikov, G. G. Grahovski, “Multi-Component NLS Models on Symmetric Spaces: Spectral Properties versus Representations Theory”, SIGMA, 6 (2010), 044, 29 pp.
Citation in format AMSBIB
\Bibitem{GerGra10}
\by V.~S.~Gerdjikov, G.~G.~Grahovski
\paper Multi-Component NLS Models on Symmetric Spaces: Spectral Properties versus Representations Theory
\jour SIGMA
\yr 2010
\vol 6
\papernumber 044
\totalpages 29
\mathnet{http://mi.mathnet.ru/sigma501}
\crossref{https://doi.org/10.3842/SIGMA.2010.044}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2725039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000278475600009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896059201}
Linking options:
  • https://www.mathnet.ru/eng/sigma501
  • https://www.mathnet.ru/eng/sigma/v6/p44
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:244
    Full-text PDF :61
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024