Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2006, Volume 2, 022, 11 pp.
DOI: https://doi.org/10.3842/SIGMA.2006.022
(Mi sigma50)
 

This article is cited in 1 scientific paper (total in 1 paper)

Real Hamiltonian Forms of Affine Toda Models Related to Exceptional Lie Algebras

Vladimir S. Gerdjikova, Georgi G. Grahovskiab

a Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria
b Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, 2 Avenue Adolphe Chauvin, F-95302 Cergy-Pontoise Cedex, France
Full-text PDF (249 kB) Citations (1)
References:
Abstract: The construction of a family of real Hamiltonian forms (RHF) for the special class of affine $1+1$-dimensional Toda field theories (ATFT) is reported. Thus the method, proposed in [1] for systems with finite number of degrees of freedom is generalized to infinite-dimensional Hamiltonian systems. The construction method is illustrated on the explicit nontrivial example of RHF of ATFT related to the exceptional algebras $\bf E_6$ and $\bf E_7$. The involutions of the local integrals of motion are proved by means of the classical $R$-matrix approach.
Keywords: solitons; affine Toda field theories; Hamiltonian systems.
Received: December 19, 2005; in final form February 5, 2006; Published online February 17, 2006
Bibliographic databases:
Document Type: Article
Language: English
Citation: Vladimir S. Gerdjikov, Georgi G. Grahovski, “Real Hamiltonian Forms of Affine Toda Models Related to Exceptional Lie Algebras”, SIGMA, 2 (2006), 022, 11 pp.
Citation in format AMSBIB
\Bibitem{GerGra06}
\by Vladimir S.~Gerdjikov, Georgi G.~Grahovski
\paper Real Hamiltonian Forms of Affine Toda Models Related to Exceptional Lie Algebras
\jour SIGMA
\yr 2006
\vol 2
\papernumber 022
\totalpages 11
\mathnet{http://mi.mathnet.ru/sigma50}
\crossref{https://doi.org/10.3842/SIGMA.2006.022}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2217731}
\zmath{https://zbmath.org/?q=an:1099.37051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065100022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236468}
Linking options:
  • https://www.mathnet.ru/eng/sigma50
  • https://www.mathnet.ru/eng/sigma/v2/p22
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :63
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024