Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2010, Volume 6, 039, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2010.039
(Mi sigma496)
 

This article is cited in 7 scientific papers (total in 7 papers)

Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring

Birgit Wehefritz-Kaufmann

Department of Mathematics and Physics, Purdue University, 150 N. University Street, West Lafayette, IN 47906, USA
Full-text PDF (299 kB) Citations (7)
References:
Abstract: We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has $U_q(SU(3))$ symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest real part. The dynamical critical exponent is $\frac32$ which is the exponent corresponding to KPZ growth in the single species asymmetric diffusion model.
Keywords: asymmetric diffusion; nested $U_q(SU(3))$ Bethe ansatz; dynamical critical exponent.
Received: September 28, 2009; in final form April 30, 2010; Published online May 12, 2010
Bibliographic databases:
Document Type: Article
MSC: 82C27; 82B20
Language: English
Citation: Birgit Wehefritz-Kaufmann, “Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring”, SIGMA, 6 (2010), 039, 15 pp.
Citation in format AMSBIB
\Bibitem{Weh10}
\by Birgit Wehefritz-Kaufmann
\paper Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a~Ring
\jour SIGMA
\yr 2010
\vol 6
\papernumber 039
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma496}
\crossref{https://doi.org/10.3842/SIGMA.2010.039}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2647318}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000278475600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860494218}
Linking options:
  • https://www.mathnet.ru/eng/sigma496
  • https://www.mathnet.ru/eng/sigma/v6/p39
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:226
    Full-text PDF :50
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024