Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2010, Volume 6, 029, 16 pp.
DOI: https://doi.org/10.3842/SIGMA.2010.029
(Mi sigma486)
 

This article is cited in 12 scientific papers (total in 12 papers)

Jordan–Schwinger Representations and Factorised Yang–Baxter Operators

David Karakhanyana, Roland Kirschnerb

a Yerevan Physics Institute, Br. Alikhanian Str. 2, 375036 Yerevan, Armenia
b Institut für Theoretische Physik, Universität Leipzig, PF 100 920, D-04009 Leipzig, Germany
References:
Abstract: The construction elements of the factorised form of the Yang–Baxter $R$ operator acting on generic representations of $q$-deformed $s\ell(n+1)$ are studied. We rely on the iterative construction of such representations by the restricted class of Jordan–Schwinger representations. The latter are formulated explicitly. On this basis the parameter exchange and intertwining operators are derived.
Keywords: Yang–Baxter equation; factorisation method.
Received: October 28, 2009; in final form March 30, 2010; Published online April 7, 2010
Bibliographic databases:
Document Type: Article
MSC: 81R50; 82B23
Language: English
Citation: David Karakhanyan, Roland Kirschner, “Jordan–Schwinger Representations and Factorised Yang–Baxter Operators”, SIGMA, 6 (2010), 029, 16 pp.
Citation in format AMSBIB
\Bibitem{KarKir10}
\by David Karakhanyan, Roland Kirschner
\paper Jordan--Schwinger Representations and Factorised Yang--Baxter Operators
\jour SIGMA
\yr 2010
\vol 6
\papernumber 029
\totalpages 16
\mathnet{http://mi.mathnet.ru/sigma486}
\crossref{https://doi.org/10.3842/SIGMA.2010.029}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2647308}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000295582700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896063079}
Linking options:
  • https://www.mathnet.ru/eng/sigma486
  • https://www.mathnet.ru/eng/sigma/v6/p29
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:734
    Full-text PDF :53
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024