Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2010, Volume 6, 023, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2010.023
(Mi sigma480)
 

This article is cited in 1 scientific paper (total in 1 paper)

Epsilon Systems on Geometric Crystals of type $A_n$

Toshiki Nakashima

Department of Mathematics, Sophia University, 102-8554, Chiyoda-ku, Tokyo, Japan
Full-text PDF (299 kB) Citations (1)
References:
Abstract: We introduce an epsilon system on a geometric crystal of type $A_n$, which is a certain set of rational functions with some nice properties. We shall show that it is equipped with a product structure and that it is invariant under the action of tropical R maps.
Keywords: geometric crystal; epsilon system; tropical R map.
Received: September 14, 2009; in final form January 28, 2010; Published online March 19, 2010
Bibliographic databases:
Document Type: Article
Language: English
Citation: Toshiki Nakashima, “Epsilon Systems on Geometric Crystals of type $A_n$”, SIGMA, 6 (2010), 023, 14 pp.
Citation in format AMSBIB
\Bibitem{Nak10}
\by Toshiki Nakashima
\paper Epsilon Systems on Geometric Crystals of type $A_n$
\jour SIGMA
\yr 2010
\vol 6
\papernumber 023
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma480}
\crossref{https://doi.org/10.3842/SIGMA.2010.023}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2602214}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275826000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055161887}
Linking options:
  • https://www.mathnet.ru/eng/sigma480
  • https://www.mathnet.ru/eng/sigma/v6/p23
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :45
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024