|
On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group
Wafaa Batata, Salima Rahmanibc a Ecole Normale Supérieure de L'Enseignement Technologique d'Oran, Département de Mathématiques et Informatique, B.P. 1523 El M'Naouar Oran, Algeria
b Laboratoire de Mathématiques-Informatique et Applications, Universitée de Haute Alsace, 68093 Mulhouse Cedex, France
c Ecole Doctorale de Systèmes Dynamiques et Géométrie, Département de Mathématiques, Faculté des Sciences, Université des Sciences et de la Technologie d'Oran,
B.P. 1505 Oran El M'Naouer, Algeria
Abstract:
In this note we prove that the Heisenberg group with a left-invariant pseudo-Riemannian metric admits a completely integrable totally geodesic distribution of codimension 1. This is on the contrary to the Riemannian case, as it was proved by T. Hangan.
Keywords:
Heisenberg group; pseudo-Riemannian metrics; geodesics; codimension 1 distributions.
Received: December 23, 2009; in final form February 23, 2010; Published online February 28, 2010
Citation:
Wafaa Batat, Salima Rahmani, “On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group”, SIGMA, 6 (2010), 021, 4 pp.
Linking options:
https://www.mathnet.ru/eng/sigma478 https://www.mathnet.ru/eng/sigma/v6/p21
|
Statistics & downloads: |
Abstract page: | 372 | Full-text PDF : | 84 | References: | 50 |
|