Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2010, Volume 6, 015, 9 pp.
DOI: https://doi.org/10.3842/SIGMA.2010.015
(Mi sigma472)
 

This article is cited in 3 scientific papers (total in 3 papers)

Anharmonic Oscillators with Infinitely Many Real Eigenvalues and $\mathcal{PT}$-Symmetry

Kwang C. Shin

Department of Mathematics, University of West Georgia, Carrollton, GA, 30118, USA
Full-text PDF (232 kB) Citations (3)
References:
Abstract: We study the eigenvalue problem $-u''+V(z)u=\lambda u$ in the complex plane with the boundary condition that $u(z)$ decays to zero as $z$ tends to infinity along the two rays $\arg z=-\frac\pi2\pm \frac2\pi{m+2}$, where $V(z)=-(iz)^m-P(iz)$ for complex-valued polynomials $P$ of degree at most $m-1\ge 2$. We provide an asymptotic formula for eigenvalues and a necessary and sufficient condition for the anharmonic oscillator to have infinitely many real eigenvalues.
Keywords: anharmonic oscillators; asymptotic formula; infinitely many real eigenvalues; $\mathcal{PT}$-symmetry.
Received: October 11, 2009; in final form January 28, 2010; Published online February 3, 2010
Bibliographic databases:
Document Type: Article
MSC: 34L20; 34L40
Language: English
Citation: Kwang C. Shin, “Anharmonic Oscillators with Infinitely Many Real Eigenvalues and $\mathcal{PT}$-Symmetry”, SIGMA, 6 (2010), 015, 9 pp.
Citation in format AMSBIB
\Bibitem{Shi10}
\by Kwang C.~Shin
\paper Anharmonic Oscillators with Infinitely Many Real Eigenvalues and $\mathcal{PT}$-Symmetry
\jour SIGMA
\yr 2010
\vol 6
\papernumber 015
\totalpages 9
\mathnet{http://mi.mathnet.ru/sigma472}
\crossref{https://doi.org/10.3842/SIGMA.2010.015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2593367}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274771200010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055191448}
Linking options:
  • https://www.mathnet.ru/eng/sigma472
  • https://www.mathnet.ru/eng/sigma/v6/p15
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:295
    Full-text PDF :59
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024