Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2010, Volume 6, 010, 13 pp.
DOI: https://doi.org/10.3842/SIGMA.2010.010
(Mi sigma467)
 

This article is cited in 3 scientific papers (total in 3 papers)

$q$-Analog of Gelfand–Graev Basis for the Noncompact Quantum Algebra $U_q(u(n,1))$

Raisa M. Asherovaa, Čestmír Burdíkb, Miloslav Havlíčekb, Yuri F. Smirnova, Valeriy N. Tolstoyba

a Institute of Nuclear Physics, Moscow State University, 119992 Moscow, Russia
b Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 12000 Prague 2, Czech Republic
Full-text PDF (271 kB) Citations (3)
References:
Abstract: For the quantum algebra $U_q(\mathfrak{gl}(n+1))$ in its reduction on the subalgebra $U_q(\mathfrak{gl}(n))$ $Z_q(\mathfrak{gl}(n+1),\mathfrak{gl}(n))$ is given in terms of the generators and their defining relations. Using this $Z$-algebra we describe Hermitian irreducible representations of a discrete series for the noncompact quantum algebra $U_q(u(n,1))$ which is a real form of $U_q(\mathfrak{gl}(n+1))$, namely, an orthonormal Gelfand–Graev basis is constructed in an explicit form.
Keywords: quantum algebra; extremal projector; reduction algebra; Shapovalov form; noncompact quantum algebra; discrete series of representations; Gelfand–Graev basis.
Received: November 5, 2009; in final form January 15, 2010; Published online January 26, 2010
Bibliographic databases:
Document Type: Article
MSC: 17B37; 81R50
Language: English
Citation: Raisa M. Asherova, Čestmír Burdík, Miloslav Havlíček, Yuri F. Smirnov, Valeriy N. Tolstoy, “$q$-Analog of Gelfand–Graev Basis for the Noncompact Quantum Algebra $U_q(u(n,1))$”, SIGMA, 6 (2010), 010, 13 pp.
Citation in format AMSBIB
\Bibitem{AshBurHav10}
\by Raisa M.~Asherova, {\v C}estm{\'\i}r Burd{\'\i}k, Miloslav Havl{\'\i}{\v{c}}ek, Yuri F.~Smirnov, Valeriy N.~Tolstoy
\paper $q$-Analog of Gelfand--Graev Basis for the Noncompact Quantum Algebra $U_q(u(n,1))$
\jour SIGMA
\yr 2010
\vol 6
\papernumber 010
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma467}
\crossref{https://doi.org/10.3842/SIGMA.2010.010}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2593372}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274771200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896062041}
Linking options:
  • https://www.mathnet.ru/eng/sigma467
  • https://www.mathnet.ru/eng/sigma/v6/p10
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:523
    Full-text PDF :81
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024