Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2010, Volume 6, 009, 8 pp.
DOI: https://doi.org/10.3842/SIGMA.2010.009
(Mi sigma466)
 

This article is cited in 9 scientific papers (total in 9 papers)

$\mathcal P\mathcal T$ Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues

Emanuela Calicetia, Francesco Cannatab, Sandro Graffia

a Dipartimento di Matematica, Università di Bologna, and INFN, Bologna, Italy
b INFN, Via Irnerio 46, 40126 Bologna, Italy
Full-text PDF (221 kB) Citations (9)
References:
Abstract: We prove the reality of the perturbed eigenvalues of some $\mathcal P\mathcal T$ symmetric Hamiltonians of physical interest by means of stability methods. In particular we study 2-dimensional generalized harmonic oscillators with polynomial perturbation and the one-dimensional $x^2(ix)^\epsilon$ for $-1<\epsilon<0$.
Keywords: $\mathcal P\mathcal T$ symmetry; real spectra; perturbation theory.
Received: November 3, 2009; in final form January 14, 2010; Published online January 20, 2010
Bibliographic databases:
Document Type: Article
Language: English
Citation: Emanuela Caliceti, Francesco Cannata, Sandro Graffi, “$\mathcal P\mathcal T$ Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues”, SIGMA, 6 (2010), 009, 8 pp.
Citation in format AMSBIB
\Bibitem{CalCanGra10}
\by Emanuela Caliceti, Francesco Cannata, Sandro Graffi
\paper $\mathcal P\mathcal T$ Symmetric Schr\"odinger Operators: Reality of the Perturbed Eigenvalues
\jour SIGMA
\yr 2010
\vol 6
\papernumber 009
\totalpages 8
\mathnet{http://mi.mathnet.ru/sigma466}
\crossref{https://doi.org/10.3842/SIGMA.2010.009}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2593373}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274771200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055186288}
Linking options:
  • https://www.mathnet.ru/eng/sigma466
  • https://www.mathnet.ru/eng/sigma/v6/p9
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:489
    Full-text PDF :71
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024