Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2010, Volume 6, 007, 7 pp.
DOI: https://doi.org/10.3842/SIGMA.2010.007
(Mi sigma464)
 

This article is cited in 7 scientific papers (total in 7 papers)

Quantum Isometry Group for Spectral Triples with Real Structu

Debashish Goswami

Stat-Math Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India
Full-text PDF (201 kB) Citations (7)
References:
Abstract: Given a spectral triple of compact type with a real structure in the sense of [Dąbrowski L., J. Geom. Phys., 56 (2006), 86–107] (which is a modification of Connes' original definition to accommodate examples coming from quantum group theory) and references therein, we prove that there is always a universal object in the category of compact quantum group acting by orientation preserving isometries (in the sense of [Bhowmick J., Goswami D., J. Funct. Anal., 257 (2009), 2530–2572]) and also preserving the real structure of the spectral triple. This gives a natural definition of quantum isometry group in the context of real spectral triples without fixing a choice of “volume form” as in [Bhowmick J., Goswami D., J. Funct. Anal., 257 (2009), 2530–2572].
Keywords: quantum isometry groups, spectral triples, real structures.
Received: November 6, 2009; in final form January 17, 2010; Published online January 20, 2010
Bibliographic databases:
Document Type: Article
MSC: 58B32
Language: English
Citation: Debashish Goswami, “Quantum Isometry Group for Spectral Triples with Real Structu”, SIGMA, 6 (2010), 007, 7 pp.
Citation in format AMSBIB
\Bibitem{Gos10}
\by Debashish Goswami
\paper Quantum Isometry Group for Spectral Triples with Real Structu
\jour SIGMA
\yr 2010
\vol 6
\papernumber 007
\totalpages 7
\mathnet{http://mi.mathnet.ru/sigma464}
\crossref{https://doi.org/10.3842/SIGMA.2010.007}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2593375}
\zmath{https://zbmath.org/?q=an:1191.58004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274771200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055186293}
Linking options:
  • https://www.mathnet.ru/eng/sigma464
  • https://www.mathnet.ru/eng/sigma/v6/p7
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:429
    Full-text PDF :62
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024