Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 106, 17 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.106
(Mi sigma452)
 

This article is cited in 2 scientific papers (total in 2 papers)

Wigner Quantization of Hamiltonians Describing Harmonic Oscillators Coupled by a General Interaction Matrix

Gilles Regniers, Joris Van der Jeugt

Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281-S9, B-9000 Gent, Belgium
Full-text PDF (370 kB) Citations (2)
References:
Abstract: In a system of coupled harmonic oscillators, the interaction can be represented by a real, symmetric and positive definite interaction matrix. The quantization of a Hamiltonian describing such a system has been done in the canonical case. In this paper, we take a more general approach and look at the system as a Wigner quantum system. Hereby, one does not assume the canonical commutation relations, but instead one just requires the compatibility between the Hamilton and Heisenberg equations. Solutions of this problem are related to the Lie superalgebras $\mathfrak{gl}(1|n)$ and $\mathfrak{osp}(1|2n)$. We determine the spectrum of the considered Hamiltonian in specific representations of these Lie superalgebras and discuss the results in detail. We also make the connection with the well-known canonical case.
Keywords: Wigner quantization; solvable Hamiltonians; Lie superalgebra representations.
Received: September 22, 2009; in final form November 20, 2009; Published online November 24, 2009
Bibliographic databases:
Document Type: Article
Language: English
Citation: Gilles Regniers, Joris Van der Jeugt, “Wigner Quantization of Hamiltonians Describing Harmonic Oscillators Coupled by a General Interaction Matrix”, SIGMA, 5 (2009), 106, 17 pp.
Citation in format AMSBIB
\Bibitem{RegVan09}
\by Gilles Regniers, Joris Van der Jeugt
\paper Wigner Quantization of Hamiltonians Describing Harmonic Oscillators Coupled by a~General Interaction Matrix
\jour SIGMA
\yr 2009
\vol 5
\papernumber 106
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma452}
\crossref{https://doi.org/10.3842/SIGMA.2009.106}
\zmath{https://zbmath.org/?q=an:05708895}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000272346700008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650699541}
Linking options:
  • https://www.mathnet.ru/eng/sigma452
  • https://www.mathnet.ru/eng/sigma/v5/p106
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :47
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024