Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 103, 40 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.103
(Mi sigma449)
 

Isomorphism of Intransitive Linear Lie Equations

Jose Miguel Martins Veloso

Faculdade de Matematica, UFPA, Belem, PA, CEP 66075-110, Brasil
References:
Abstract: We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie equation, and from the intransitive Lie algebra we recover the linear Lie equation, unless of formal isomorphism. The intransitive Lie algebra gives the structure functions introduced by É. Cartan.
Keywords: Lie equations; Lie groupoids; intransitive; isomorphism.
Received: February 9, 2009; in final form November 11, 2009; Published online November 17, 2009
Bibliographic databases:
Document Type: Article
MSC: 58H05; 58H10
Language: English
Citation: Jose Miguel Martins Veloso, “Isomorphism of Intransitive Linear Lie Equations”, SIGMA, 5 (2009), 103, 40 pp.
Citation in format AMSBIB
\Bibitem{Vel09}
\by Jose Miguel Martins Veloso
\paper Isomorphism of Intransitive Linear Lie Equations
\jour SIGMA
\yr 2009
\vol 5
\papernumber 103
\totalpages 40
\mathnet{http://mi.mathnet.ru/sigma449}
\crossref{https://doi.org/10.3842/SIGMA.2009.103}
\zmath{https://zbmath.org/?q=an:05708892}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000272346700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896061770}
Linking options:
  • https://www.mathnet.ru/eng/sigma449
  • https://www.mathnet.ru/eng/sigma/v5/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024