Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 096, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.096
(Mi sigma442)
 

This article is cited in 29 scientific papers (total in 29 papers)

Factor-Group-Generated Polar Spaces and (Multi-)Qudits

Hans Havlicekab, Boris Odehnalb, Metod Sanigaac

a Center for Interdisciplineary Research (ZiF), University of Bielefeld, D-33615 Bielefeld, Germany
b Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8-10/104, A-1040 Wien, Austria
c Astronomical Institute, Slovak Academy of Sciences, SK-05960 Tatranská Lomnica, Slovak Republic
References:
Abstract: Recently, a number of interesting relations have been discovered between generalised Pauli/Dirac groups and certain finite geometries. Here, we succeeded in finding a general unifying framework for all these relations. We introduce gradually necessary and sufficient conditions to be met in order to carry out the following programme: Given a group $\mathbf G$, we first construct vector spaces over $\mathrm{GF}(p)$, $p$ a prime, by factorising $\mathbf G$ over appropriate normal subgroups. Then, by expressing $\mathrm{GF}(p)$ in terms of the commutator subgroup of $\mathbf G$, we construct alternating bilinear forms, which reflect whether or not two elements of $\mathbf G$ commute. Restricting to $p=2$, we search for “refinements” in terms of quadratic forms, which capture the fact whether or not the order of an element of $\mathbf G$ is $\leq 2$. Such factor-group-generated vector spaces admit a natural reinterpretation in the language of symplectic and orthogonal polar spaces, where each point becomes a “condensation” of several distinct elements of $\mathbf G$. Finally, several well-known physical examples (single- and two-qubit Pauli groups, both the real and complex case) are worked out in detail to illustrate the fine traits of the formalism.
Keywords: groups; symplectic and orthogonal polar spaces; geometry of generalised Pauli groups.
Received: August 19, 2009; in final form October 2, 2009; Published online October 13, 2009
Bibliographic databases:
Document Type: Article
MSC: 20C35; 51A50; 81R05
Language: English
Citation: Hans Havlicek, Boris Odehnal, Metod Saniga, “Factor-Group-Generated Polar Spaces and (Multi-)Qudits”, SIGMA, 5 (2009), 096, 15 pp.
Citation in format AMSBIB
\Bibitem{HavOdeSan09}
\by Hans Havlicek, Boris Odehnal, Metod Saniga
\paper Factor-Group-Generated Polar Spaces and (Multi-)Qudits
\jour SIGMA
\yr 2009
\vol 5
\papernumber 096
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma442}
\crossref{https://doi.org/10.3842/SIGMA.2009.096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2559665}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271092200032}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896061931}
Linking options:
  • https://www.mathnet.ru/eng/sigma442
  • https://www.mathnet.ru/eng/sigma/v5/p96
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:442
    Full-text PDF :72
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024