Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 095, 28 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.095
(Mi sigma441)
 

This article is cited in 5 scientific papers (total in 5 papers)

Geometry of Control-Affine Systems

Jeanne N. Clellanda, Christopher G. Moseleyb, George R. Wilkensc

a Department of Mathematics, 395 UCB, University of Colorado, Boulder, CO 80309-0395, USA
b Department of Mathematics and Statistics, Calvin College, Grand Rapids, MI 49546, USA
c Department of Mathematics, University of Hawaii at Manoa, 2565 McCarthy Mall, Honolulu, HI 96822-2273, USA
Full-text PDF (345 kB) Citations (5)
References:
Abstract: Motivated by control-affine systems in optimal control theory, we introduce the notion of a point-affine distribution on a manifold $\mathscr X$ – i.e., an affine distribution $\mathscr F$ together with a distinguished vector field contained in $\mathscr F$. We compute local invariants for point-affine distributions of constant type when $\dim(\mathscr X)=n$, $\operatorname{rank}(\mathscr F)=n-1$, and when $\dim(\mathscr X)=3$, $\operatorname{rank}(\mathscr F)=1$. Unlike linear distributions, which are characterized by integer-valued invariants – namely, the rank and growth vector – when $\dim(\mathscr X)\leq 4$, we find local invariants depending on arbitrary functions even for rank 1 point-affine distributions on manifolds of dimension 2.
Keywords: affine distributions; control theory; exterior differential systems; Cartan's method of equivalence.
Received: April 2, 2009; in final form September 28, 2009; Published online October 7, 2009
Bibliographic databases:
Document Type: Article
Language: English
Citation: Jeanne N. Clelland, Christopher G. Moseley, George R. Wilkens, “Geometry of Control-Affine Systems”, SIGMA, 5 (2009), 095, 28 pp.
Citation in format AMSBIB
\Bibitem{CleMosWil09}
\by Jeanne N.~Clelland, Christopher G.~Moseley, George R.~Wilkens
\paper Geometry of Control-Affine Systems
\jour SIGMA
\yr 2009
\vol 5
\papernumber 095
\totalpages 28
\mathnet{http://mi.mathnet.ru/sigma441}
\crossref{https://doi.org/10.3842/SIGMA.2009.095}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2559666}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271092200031}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896059933}
Linking options:
  • https://www.mathnet.ru/eng/sigma441
  • https://www.mathnet.ru/eng/sigma/v5/p95
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:242
    Full-text PDF :47
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024