|
This article is cited in 6 scientific papers (total in 6 papers)
Axiomatic Quantum Field Theory in Terms of Operator Product Expansions: General Framework, and Perturbation Theory via Hochschild Cohomology
Stefan Hollands School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, UK
Abstract:
In this paper, we propose a new framework for quantum field theory in terms of consistency conditions. The consistency conditions that we consider are “associativity” or “factorization” conditions on the operator product expansion (OPE) of the theory, and are proposed to be the defining property of any quantum field theory. Our framework is presented in the Euclidean setting, and is applicable in principle to any quantum field theory, including non-conformal ones. In our framework, we obtain a characterization of perturbations of a given quantum field theory in terms of a certain cohomology ring of Hochschild-type. We illustrate our framework by the free field, but our constructions are general and apply also to interacting quantum field theories. For such theories, we propose a new scheme to construct the OPE which is based on the use of non-linear quantized field equations.
Keywords:
quantum field theory; operator product expansion; quantum algebra; Hochschild cohomology.
Received: September 19, 2008; in final form September 1, 2009; Published online September 18, 2009
Citation:
Stefan Hollands, “Axiomatic Quantum Field Theory in Terms of Operator Product Expansions: General Framework, and Perturbation Theory via Hochschild Cohomology”, SIGMA, 5 (2009), 090, 45 pp.
Linking options:
https://www.mathnet.ru/eng/sigma436 https://www.mathnet.ru/eng/sigma/v5/p90
|
|