Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 089, 2 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.089
(Mi sigma435)
 

This article is cited in 1 scientific paper (total in 1 paper)

Comment on “Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty”

Bijan Bagchia, Andreas Fringb

a Department of Applied Mathematics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, India
b Centre for Mathematical Science, City University London, Northampton Square, London EC1V 0HB, UK
Full-text PDF (115 kB) Citations (1)
References:
Abstract: We demonstrate that the recent paper by Jana and Roy entitled “Non-Hermitian quantum mechanics with minimal length uncertainty” [SIGMA 5 (2009), 083, 7 pages, arXiv:0908.1755] contains various misconceptions. We compare with an analysis on the same topic carried out previously in our manuscript [arXiv:0907.5354]. In particular, we show that the metric operators computed for the deformed non-Hermitian Swanson models differs in both cases and is inconsistent in the former.
Keywords: non-Hermitian Hamiltonians; deformed canonical commutation relations; minimal length.
Received: August 18, 2009; Published online September 17, 2009
Bibliographic databases:
Document Type: Article
MSC: 81Q10; 46C15; 81Q12
Language: English
Citation: Bijan Bagchi, Andreas Fring, “Comment on “Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty””, SIGMA, 5 (2009), 089, 2 pp.
Citation in format AMSBIB
\Bibitem{BagFri09}
\by Bijan Bagchi, Andreas Fring
\paper Comment on ``Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty''
\jour SIGMA
\yr 2009
\vol 5
\papernumber 089
\totalpages 2
\mathnet{http://mi.mathnet.ru/sigma435}
\crossref{https://doi.org/10.3842/SIGMA.2009.089}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2559672}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271092200025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896062580}
Linking options:
  • https://www.mathnet.ru/eng/sigma435
  • https://www.mathnet.ru/eng/sigma/v5/p89
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025