Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 088, 10 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.088
(Mi sigma434)
 

This article is cited in 10 scientific papers (total in 10 papers)

Trigonometric Solutions of WDVV Equations and Generalized Calogero–Moser–Sutherland Systems

Misha V. Feigin

Department of Mathematics, University of Glasgow, G12 8QW, UK
References:
Abstract: We consider trigonometric solutions of WDVV equations and derive geometric conditions when a collection of vectors with multiplicities determines such a solution. We incorporate these conditions into the notion of trigonometric Veselov system ($\vee$-system) and we determine all trigonometric $\vee$-systems with up to five vectors. We show that generalized Calogero–Moser–Sutherland operator admits a factorized eigenfunction if and only if it corresponds to the trigonometric $\vee$-system; this inverts a one-way implication observed by Veselov for the rational solutions.
Keywords: Witten–Dijkgraaf–Verlinde–Verlinde equations, $\vee$-systems, Calogero–Moser–Sutherland systems.
Received: May 18, 2009; in final form September 7, 2009; Published online September 17, 2009
Bibliographic databases:
Document Type: Article
MSC: 35Q40; 52C99
Language: English
Citation: Misha V. Feigin, “Trigonometric Solutions of WDVV Equations and Generalized Calogero–Moser–Sutherland Systems”, SIGMA, 5 (2009), 088, 10 pp.
Citation in format AMSBIB
\Bibitem{Fei09}
\by Misha V.~Feigin
\paper Trigonometric Solutions of WDVV Equations and Generalized Calogero--Moser--Sutherland Systems
\jour SIGMA
\yr 2009
\vol 5
\papernumber 088
\totalpages 10
\mathnet{http://mi.mathnet.ru/sigma434}
\crossref{https://doi.org/10.3842/SIGMA.2009.088}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2559673}
\zmath{https://zbmath.org/?q=an:1169.81015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271092200024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896059158}
Linking options:
  • https://www.mathnet.ru/eng/sigma434
  • https://www.mathnet.ru/eng/sigma/v5/p88
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025