Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 078, 22 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.078
(Mi sigma423)
 

This article is cited in 16 scientific papers (total in 16 papers)

On Spinor Varieties and Their Secants

Laurent Manivel

Institut Fourier, Université de Grenoble I et CNRS, BP 74, 38402 Saint-Martin d'Hères, France
References:
Abstract: We study the secant variety of the spinor variety, focusing on its equations of degree three and four. We show that in type $D_n$, cubic equations exist if and only if $n\ge9$. In general the ideal has generators in degrees at least three and four. Finally we observe that the other Freudenthal varieties exhibit strikingly similar behaviors.
Keywords: spinor variety; spin representation; secant variety; Freudenthal variety.
Received: April 3, 2009; in final form July 21, 2009; Published online July 24, 2009
Bibliographic databases:
Document Type: Article
Language: English
Citation: Laurent Manivel, “On Spinor Varieties and Their Secants”, SIGMA, 5 (2009), 078, 22 pp.
Citation in format AMSBIB
\Bibitem{Man09}
\by Laurent Manivel
\paper On Spinor Varieties and Their Secants
\jour SIGMA
\yr 2009
\vol 5
\papernumber 078
\totalpages 22
\mathnet{http://mi.mathnet.ru/sigma423}
\crossref{https://doi.org/10.3842/SIGMA.2009.078}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2529169}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271092200014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896059273}
Linking options:
  • https://www.mathnet.ru/eng/sigma423
  • https://www.mathnet.ru/eng/sigma/v5/p78
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024