Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 070, 34 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.070
(Mi sigma415)
 

This article is cited in 6 scientific papers (total in 6 papers)

On Brane Solutions Related to Non-Singular Kac–Moody Algebras

Vladimir D. Ivashchukab, Vitaly N. Melnikovab

a Institute of Gravitation and Cosmology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Str., Moscow 117198, Russia
b Center for Gravitation and Fundamental Metrology, VNIIMS, 46 Ozyornaya Str., Moscow 119361, Russia
Full-text PDF (507 kB) Citations (6)
References:
Abstract: A multidimensional gravitational model containing scalar fields and antisymmetric forms is considered. The manifold is chosen in the form $M=M_0\times M_1\times\cdots\times M_n$, where $M_i$ are Einstein spaces ($i\geq1$). The sigma-model approach and exact solutions with intersecting composite branes (e.g. solutions with harmonic functions, $S$-brane and black brane ones) with intersection rules related to non-singular Kac–Moody (KM) algebras (e.g. hyperbolic ones) are reviewed. Some examples of solutions, e.g. corresponding to hyperbolic KM algebras: $H_2(q,q)$, $AE_3$, $HA_2^{(1)}$, $E_{10}$ and Lorentzian KM algebra $P_{10}$ are presented.
Keywords: Kac–Moody algebras; $S$-branes; black branes; sigma-model; Toda chains.
Received: October 1, 2008; in final form June 15, 2009; Published online July 7, 2009
Bibliographic databases:
Document Type: Article
Language: English
Citation: Vladimir D. Ivashchuk, Vitaly N. Melnikov, “On Brane Solutions Related to Non-Singular Kac–Moody Algebras”, SIGMA, 5 (2009), 070, 34 pp.
Citation in format AMSBIB
\Bibitem{IvaMel09}
\by Vladimir D.~Ivashchuk, Vitaly N.~Melnikov
\paper On Brane Solutions Related to Non-Singular Kac--Moody Algebras
\jour SIGMA
\yr 2009
\vol 5
\papernumber 070
\totalpages 34
\mathnet{http://mi.mathnet.ru/sigma415}
\crossref{https://doi.org/10.3842/SIGMA.2009.070}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2529177}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271092200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896061105}
Linking options:
  • https://www.mathnet.ru/eng/sigma415
  • https://www.mathnet.ru/eng/sigma/v5/p70
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024