Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 067, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.067
(Mi sigma413)
 

This article is cited in 5 scientific papers (total in 5 papers)

Symplectic Applicability of Lagrangian Surfaces

Emilio Mussoa, Lorenzo Nicolodib

a Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
b Dipartimento di Matematica, Università degli Studi di Parma, Viale G. P. Usberti 53/A, I-43100 Parma, Italy
Full-text PDF (297 kB) Citations (5)
References:
Abstract: We develop an approach to affine symplectic invariant geometry of Lagrangian surfaces by the method of moving frames. The fundamental invariants of elliptic Lagrangian immersions in affine symplectic four-space are derived together with their integrability equations. The invariant setup is applied to discuss the question of symplectic applicability for elliptic Lagrangian immersions. Explicit examples are considered.
Keywords: Lagrangian surfaces; affine symplectic geometry; moving frames; differential invariants; applicability.
Received: February 25, 2009; in final form June 15, 2009; Published online June 30, 2009
Bibliographic databases:
Document Type: Article
Language: English
Citation: Emilio Musso, Lorenzo Nicolodi, “Symplectic Applicability of Lagrangian Surfaces”, SIGMA, 5 (2009), 067, 18 pp.
Citation in format AMSBIB
\Bibitem{MusNic09}
\by Emilio Musso, Lorenzo Nicolodi
\paper Symplectic Applicability of Lagrangian Surfaces
\jour SIGMA
\yr 2009
\vol 5
\papernumber 067
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma413}
\crossref{https://doi.org/10.3842/SIGMA.2009.067}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2529180}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271092200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896059277}
Linking options:
  • https://www.mathnet.ru/eng/sigma413
  • https://www.mathnet.ru/eng/sigma/v5/p67
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024