Loading [MathJax]/jax/output/SVG/config.js
Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 067, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.067
(Mi sigma413)
 

This article is cited in 5 scientific papers (total in 5 papers)

Symplectic Applicability of Lagrangian Surfaces

Emilio Mussoa, Lorenzo Nicolodib

a Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
b Dipartimento di Matematica, Università degli Studi di Parma, Viale G. P. Usberti 53/A, I-43100 Parma, Italy
Full-text PDF (297 kB) Citations (5)
References:
Abstract: We develop an approach to affine symplectic invariant geometry of Lagrangian surfaces by the method of moving frames. The fundamental invariants of elliptic Lagrangian immersions in affine symplectic four-space are derived together with their integrability equations. The invariant setup is applied to discuss the question of symplectic applicability for elliptic Lagrangian immersions. Explicit examples are considered.
Keywords: Lagrangian surfaces; affine symplectic geometry; moving frames; differential invariants; applicability.
Received: February 25, 2009; in final form June 15, 2009; Published online June 30, 2009
Bibliographic databases:
Document Type: Article
Language: English
Citation: Emilio Musso, Lorenzo Nicolodi, “Symplectic Applicability of Lagrangian Surfaces”, SIGMA, 5 (2009), 067, 18 pp.
Citation in format AMSBIB
\Bibitem{MusNic09}
\by Emilio Musso, Lorenzo Nicolodi
\paper Symplectic Applicability of Lagrangian Surfaces
\jour SIGMA
\yr 2009
\vol 5
\papernumber 067
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma413}
\crossref{https://doi.org/10.3842/SIGMA.2009.067}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2529180}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271092200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896059277}
Linking options:
  • https://www.mathnet.ru/eng/sigma413
  • https://www.mathnet.ru/eng/sigma/v5/p67
  • This publication is cited in the following 5 articles:
    1. Jensen J.O., Kruglikov B., “Differential Invariants of Linear Symplectic Actions”, Symmetry-Basel, 12:12 (2020), 2023  crossref  isi
    2. Gabrielyan D., “Forecasting Inflation Using the Phillips Curve in Inflation Targeting Countries”, Int. Rev. Appl. Econ., 33:5 (2019), 601–623  crossref  isi  scopus
    3. Esra ÇİÇEK ÇETİN, Mehmet BEKTAŞ, “Some New Characterizations of Symplectic Curve in 4-Dimensional Symplectic Space”, Communications in Advanced Mathematical Sciences, 2:4 (2019), 331  crossref
    4. Musso E. Hubert E., “Lagrangian Curves in a 4-Dimensional Affine Symplectic Space”, Acta Appl. Math., 134:1 (2014), 133–160  crossref  mathscinet  zmath  isi  elib  scopus
    5. Dennis The, “Conformal geometry of surfaces in the Lagrangian Grassmannian and second-order PDE”, Proc London Math Soc, 104:1 (2012), 79–122  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:233
    Full-text PDF :42
    References:27
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025